Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 213548 by universe last updated on 08/Nov/24

0<c<1 such that the recursive sequence  {a_n } defined by setting    a_(1 ) = (c/2)  , a_(n+1)  = (1/2)(c+a_n ^2 )  for n∈ N  monotonic and convergent

0<c<1suchthattherecursivesequence{an}definedbysettinga1=c2,an+1=12(c+an2)fornNmonotonicandconvergent

Answered by Berbere last updated on 10/Nov/24

Let f(z)=(1/2)(c+z^2 ) z∈R_+ ;f′(z)=z≥0  claim ∀n∈N  a_n ∈[0,1]  a_n =fof.....f(a_1 )  n timez  f[0,1]=[f(0),f(1)]=[(c/2),((1+c)/2)] ⊆[0,1];0≤c≤1  ⇒fo.....f([0,1])⊆[0,1]⇒∀n∈N a_n ∈[0,1]  a_2 =(c/2)[1+(c/4)]≥(c/2)⇒a_2 ≥a_1   since f increse  ⇒∀n∈N a_(n+1) ≥a_n ⇒a_n  increase bounded cv to fix pint of f  l=lim_(n→∞) a_n  is Solution of f(x)=x⇔x^2 −2x+c=0  x=1+(√(1−c))>1;1−(√(1−c))  l=1−(√(1−c))

Letf(z)=12(c+z2)zR+;f(z)=z0claimnNan[0,1]an=fof.....f(a1)ntimezf[0,1]=[f(0),f(1)]=[c2,1+c2][0,1];0c1fo.....f([0,1])[0,1]nNan[0,1]a2=c2[1+c4]c2a2a1sincefincresenNan+1ananincreaseboundedcvtofixpintoffl=limnanisSolutionoff(x)=xx22x+c=0x=1+1c>1;11cl=11c

Commented by universe last updated on 10/Nov/24

nice solution sir   thank you so much

nicesolutionsirthankyousomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com