All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 213662 by Spillover last updated on 13/Nov/24
Answered by mathmax last updated on 14/Nov/24
I=∫0∞x21+exdx⇒I=∫0∞e−xx21+e−xdx=∫0∞x2e−x∑n=0∞(−1)ne−nxdx=∑n=0∞(−1)n∫0∞x2e−(n+1)xdx(n+1)x=t=∑n=0∞(−1)n∫0∞t2(n+1)2e−tdtn+1=∑n=0∞(−1)n(n+1)3∫0∞t3−1e−tdt=Γ(3).∑n=0∞(−1)n(n+1)3wehave∑n=0∞(−1)n(n+1)3=∑n=1∞(−1)n−1n3=eta(3)=(1−21−3)ζ(3)=(1−14)ζ(3)=34ζ(3)Γ(3)=2!=2⇒I=32ζ(3)
Commented by Spillover last updated on 16/Nov/24
greatsolution
Terms of Service
Privacy Policy
Contact: info@tinkutara.com