Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 213721 by a.lgnaoui last updated on 14/Nov/24

Resoudre le systeme d′ equations:   { (((x+y)xy=84)),((x^2 +y^2       =25)) :}

Resoudrelesystemedequations:{(x+y)xy=84x2+y2=25

Answered by golsendro last updated on 14/Nov/24

   (x+y)^2 −2xy= x^2 +y^2 =25     Let  { ((x+y=a)),((xy=b)) :}      { ((ab=84)),((a^2 −2b=25⇒a^3 −2ab=25a)) :}       a^3 −25a−168=0      (a−7)(a^2 +7a+24)=0       a=7 ⇒b=12        { ((x+y=7)),((xy=12)) :}

(x+y)22xy=x2+y2=25Let{x+y=axy=b{ab=84a22b=25a32ab=25aa325a168=0(a7)(a2+7a+24)=0a=7b=12{x+y=7xy=12

Answered by Frix last updated on 14/Nov/24

x=u−(√v)∧y=u+(√v)   { ((2u(u^2 −v)=84)),((2(u^2 +v)=25)) :}   { ((v=((u^3 −42)/u))),((v=((25−2u^2 )/2))) :}  ((u^3 −42)/u)=((25−2u^2 )/2)  u^3 −((25)/4)u−21=0  u=(7/2)∨u=−(7/4)±((√(47))/4)i  ⇒  v=(1/4)∨v=((99)/8)±((7(√(47)))/8)i  ⇒  x=3∧y=4  It′s possible to give the exact forms of the  complex solutions but they′re not “nice”  x≈−5.36437±.884073  y≈1.86437±2.54375  And of course we can exchange x⇄y

x=uvy=u+v{2u(u2v)=842(u2+v)=25{v=u342uv=252u22u342u=252u22u3254u21=0u=72u=74±474iv=14v=998±7478ix=3y=4Itspossibletogivetheexactformsofthecomplexsolutionsbuttheyrenotnicex5.36437±.884073y1.86437±2.54375Andofcoursewecanexchangexy

Answered by Rasheed.Sindhi last updated on 14/Nov/24

 { (((x+y)xy=84....i)),((x^2 +y^2       =25...ii)) :}  i⇒  (x+y)^2 (xy)^2 =84^2        ⇒(x+y)^2 =((84^2 )/((xy)^2 ))...iii  ii⇒(x+y)^2 =25+2xy...iv  iii & iv⇒((84^2 )/((xy)^2 ))=25+2xy           ⇒2(xy)^3 +25(xy)^2 −84^2 =0  let xy=z              2z^3 +25z^2 −84^2 =0          (z−12)(2z^2 +49z+588)=0           z=12 or z=((−49±7i(√(47)))/4)

{(x+y)xy=84....ix2+y2=25...iii(x+y)2(xy)2=842(x+y)2=842(xy)2...iiiii(x+y)2=25+2xy...iviii&iv842(xy)2=25+2xy2(xy)3+25(xy)2842=0letxy=z2z3+25z2842=0(z12)(2z2+49z+588)=0z=12orz=49±7i474

Terms of Service

Privacy Policy

Contact: info@tinkutara.com