Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 213790 by issac last updated on 16/Nov/24

So Weird......  ∫_0 ^( ∞) J_ν (t)e^(−st) dt=(((s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1))))   J_(−ν) (t)=(−1)^ν J_ν (t)    ∫_0 ^( ∞)  J_(−ν) (t)e^(−st) dt=(((−1)^ν (s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1)))) is true  But ∫_0 ^( ∞)  J_(−ν) (t)e^(−st) dt is not (((s+(√(s^2 +1)))^ν )/( (√(s^2 +1))))  why....? can you explain   why Blue equation is not true....

SoWeird......0Jν(t)estdt=(s+s2+1)νs2+1Jν(t)=(1)νJν(t)0Jν(t)estdt=(1)ν(s+s2+1)νs2+1istrueBut0Jν(t)estdtisnot(s+s2+1)νs2+1why....?canyouexplainwhyBlueequationisnottrue....

Commented by Frix last updated on 16/Nov/24

I know nothing about these functions but  this is obvious, we only need this general  rule of integration: ∫af(x)dx=a∫f(x)dx  1. ∫_0 ^∞ J_v (t)e^(−st) dt=(((s+(√(s^2 +1)))^(−v) )/( (√(s^2 +1))))  2. J_(−v) (t)=(−1)^v J_v (t)  ⇒  ∫_0 ^∞ J_(−v) (t)e^(−st) dt=(−1)^v ∫_0 ^∞ J_v (t)e^(−st) dt=  =(((−1)^v (s+(√(s^2 +1)))^(−v) )/( (√(s^2 +1))))≠(((s+(√(s^2 +1)))^v )/( (√(s^2 +1))))  I don′t see the problem...

Iknownothingaboutthesefunctionsbutthisisobvious,weonlyneedthisgeneralruleofintegration:af(x)dx=af(x)dx1.0Jv(t)estdt=(s+s2+1)vs2+12.Jv(t)=(1)vJv(t)0Jv(t)estdt=(1)v0Jv(t)estdt==(1)v(s+s2+1)vs2+1(s+s2+1)vs2+1Idontseetheproblem...

Commented by issac last updated on 17/Nov/24

J_ν (z) is Σ_(h=0) ^∞  (((−1)^h )/(h!(h+ν)!)) ((z/2))^(2h+ν)   Y_ν (z)=cot(πν)J_ν (z)−csc(πν)J_(−ν) (z)  (Bessel function)  Bessel function have some Properties  ex.  ν∈±2Z , J_(−ν) (z),Y_(−ν) (z)=J_ν (z),Y_ν (z)  ν∉±2Z, J_(−ν) (z),Y_(−ν) (z)=−J_ν (z),−Y_ν (z)  and ν∈Z  J_(−ν−(1/2)) (z)=(−1)^(ν+1) Y_(ν+(1/2)) (z)  Y_(−ν−(1/2)) (z)=(−1)^ν J_(ν+(1/2)) (z)

Jν(z)ish=0(1)hh!(h+ν)!(z2)2h+νYν(z)=cot(πν)Jν(z)csc(πν)Jν(z)(Besselfunction)BesselfunctionhavesomePropertiesex.ν±2Z,Jν(z),Yν(z)=Jν(z),Yν(z)ν±2Z,Jν(z),Yν(z)=Jν(z),Yν(z)andνZJν12(z)=(1)ν+1Yν+12(z)Yν12(z)=(1)νJν+12(z)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com