Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 213796 by efronzo1 last updated on 17/Nov/24

Answered by A5T last updated on 17/Nov/24

x_0 =k⇒x_1 =((1+k)/(1−k))⇒x_2 =((−1)/k)⇒x_3 =((k−1)/(1+k))⇒x_4 =((2k)/2)=k  ⇒x_(4n) =k=2022

x0=kx1=1+k1kx2=1kx3=k11+kx4=2k2=kx4n=k=2022

Answered by Frix last updated on 17/Nov/24

n≥0:  x_(4n) =x_0   x_(4n+1) =((1+x_0 )/(1−x_0 ))  x_(4n+2) =−(1/x_0 )  x_(4n+3) =((x_0 −1)/(x_0 +1))  It′s easy...

n0:x4n=x0x4n+1=1+x01x0x4n+2=1x0x4n+3=x01x0+1Itseasy...

Answered by golsendro last updated on 17/Nov/24

   x_n  = ((1+x_(n−1) )/(1−x_(n−1) )) ; n−1 ≥ 0    x_1  = ((2023)/(−2021)) , x_2 =((1−((2023)/(2021)))/(1+((2023)/(2021)))) = ((−1)/(2022))   x_3  = ((1−(1/(2022)))/(1+(1/(2022)))) = ((2021)/(2023)) , x_4 = ((1+((2021)/(2023)))/(1−((2021)/(2023))))=2022   ⇒ 4 ∣2024 ; x_(2024)  = x_0 =x_4 =x_8 ...=2022

xn=1+xn11xn1;n10x1=20232021,x2=1202320211+20232021=12022x3=1120221+12022=20212023,x4=1+20212023120212023=202242024;x2024=x0=x4=x8...=2022

Answered by mr W last updated on 17/Nov/24

let x_n =tan θ_n   tan θ_(n+1) =x_(n+1) =((1+tan θ_n )/(1−tan θ_n ))=tan (θ_n +(π/4))  ⇒θ_(n+1) =θ_n +(π/4)  ⇒θ_n =θ_(n−1) +(π/4)=θ_(n−2) +((2π)/4)=...=θ_0 +((nπ)/4)  ⇒x_n =tan (θ_0 +((nπ)/4))=((tan θ_0 +tan ((nπ)/4))/(1−tan θ_n tan ((nπ)/4)))  ⇒x_n =((x_0 +tan ((nπ)/4))/(1−x_0 tan ((nπ)/4)))=((2022+tan ((nπ)/4))/(1−2022 tan ((nπ)/4)))  x_(2024) =((2022+tan ((2024π)/4))/(1−2022 tan ((2024π)/4)))            =((2022+0)/(1−2022×0))=2022

letxn=tanθntanθn+1=xn+1=1+tanθn1tanθn=tan(θn+π4)θn+1=θn+π4θn=θn1+π4=θn2+2π4=...=θ0+nπ4xn=tan(θ0+nπ4)=tanθ0+tannπ41tanθntannπ4xn=x0+tannπ41x0tannπ4=2022+tannπ412022tannπ4x2024=2022+tan2024π412022tan2024π4=2022+012022×0=2022

Terms of Service

Privacy Policy

Contact: info@tinkutara.com