Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 213838 by ajfour last updated on 18/Nov/24

Commented by ajfour last updated on 18/Nov/24

A solid ball is released over a fixed  cylindrical wedge as shown. Friction  is sufficient. If just after the ball  leaves the curved surface due to  Normal reaction vanishing, it   thereupon touches the ground below  then find the radius ratio r/R.

Asolidballisreleasedoverafixedcylindricalwedgeasshown.Frictionissufficient.IfjustaftertheballleavesthecurvedsurfaceduetoNormalreactionvanishing,itthereupontouchesthegroundbelowthenfindtheradiusratior/R.

Answered by mr W last updated on 18/Nov/24

Commented by mr W last updated on 20/Nov/24

rotation of ball  φ=(1+(R/r))θ  (dφ/dt)=(1+(R/r))ω with ω=(dθ/dt)  α=(d^2 φ/dt^2 )=(1+(R/r))ω×(dω/dθ)  (((2mr^2 )/5)+mr^2 )×(1+(R/r))ω×(dω/dθ)=mgr sin θ  ωdω=((5g)/(7(r+R))) sin θ dθ  ∫_0 ^ω ωdω=((5g)/(7(r+R))) ∫_0 ^θ sin θ dθ  (ω^2 /2)=((5g(1−cos θ))/(7(r+R)))  ⇒ω^2 =((10g(1−cos θ))/(7(r+R)))  −+−+−+−+−+−+−  alternatively:  mg(r+R)(1−cos θ)=(1/2)(((2mr^2 )/5))(1+(R/r))^2 ω^2 +(m/2)×r^2 ×(1+(R/r))^2 ω^2   2g(1−cos θ)=(7/5)(r+R)ω^2   ⇒ω^2 =((10g(1−cos θ))/(7(r+R)))  −+−+−+−+−+−+−  mg cos θ−N=(m/(r+R))×(1+(R/r))^2 r^2 ω^2   N=mg cos θ−m(r+R)×((10g(1−cos θ))/(7(r+R)))  N=(((17 cos θ−10)mg)/7)  N=0 ⇒17 cos θ−10=0 ⇒cos θ=((10)/(17))  ⇒θ=cos^(−1) ((10)/(17))≈53.97°  θ=ϕ   ⇒cos ϕ=cos θ=((10)/(17))  (r/(r+R))=((10)/(17))  ⇒(r/R)=(1/(((17)/(10))−1))=((10)/7) ✓

rotationofballϕ=(1+Rr)θdϕdt=(1+Rr)ωwithω=dθdtα=d2ϕdt2=(1+Rr)ω×dωdθ(2mr25+mr2)×(1+Rr)ω×dωdθ=mgrsinθωdω=5g7(r+R)sinθdθ0ωωdω=5g7(r+R)0θsinθdθω22=5g(1cosθ)7(r+R)ω2=10g(1cosθ)7(r+R)++++++alternatively:mg(r+R)(1cosθ)=12(2mr25)(1+Rr)2ω2+m2×r2×(1+Rr)2ω22g(1cosθ)=75(r+R)ω2ω2=10g(1cosθ)7(r+R)++++++mgcosθN=mr+R×(1+Rr)2r2ω2N=mgcosθm(r+R)×10g(1cosθ)7(r+R)N=(17cosθ10)mg7N=017cosθ10=0cosθ=1017θ=cos1101753.97°θ=φcosφ=cosθ=1017rr+R=1017rR=117101=107

Commented by mr W last updated on 18/Nov/24

angle θ at which the ball is losing  the contact with the wedge is   independent from their radii!

angleθatwhichtheballislosingthecontactwiththewedgeisindependentfromtheirradii!

Commented by ajfour last updated on 18/Nov/24

loss in G.P.E.=gain in total K.E.   mgR =(1/2)((7/5)mr^2 )ω^2   mgcos θ=mω^2 r^2 /(R+r)  now dividing  (R/(cos θ))=(7/(10))(R+r)  now  cos θ=(r/(R+r))  ⇒  (R/r)=(7/(10))  ★

lossinG.P.E.=gainintotalK.E.mgR=12(75mr2)ω2mgcosθ=mω2r2/(R+r)nowdividingRcosθ=710(R+r)nowcosθ=rR+rRr=710

Terms of Service

Privacy Policy

Contact: info@tinkutara.com