Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 213920 by ajfour last updated on 21/Nov/24

Commented by ajfour last updated on 21/Nov/24

Can we find at what speed does point  P approach the ground just before  hitting the ground if released at say  the lower edge at 45° to horizontal.  The radius of semi-disc is r, mass m.

CanwefindatwhatspeeddoespointPapproachthegroundjustbeforehittingthegroundifreleasedatsaytheloweredgeat45°tohorizontal.Theradiusofsemidiscisr,massm.

Answered by mr W last updated on 22/Nov/24

Commented by mr W last updated on 23/Nov/24

e=((4r)/(3π))=kr with k=(4/(3π))  I_0 =((1/2)−((16)/(9π^2 )))mr^2 =ξmr^2  with ξ=(1/2)−((16)/(9π^2 ))  the center point G of disc moves   only vertically, because no force  is acting in horizontal direction.  y_G =r sin θ+e cos θ=r(sin θ+k cos θ)  v_(Gy) =−(dy_G /dt)=r(cos θ−k sin θ)ω  with ω=−(dθ/dt)  at t=0: θ_0 =(π/4)  y_(G0) =r(sin θ_0 +k cos θ_0 )  mg(y_(G0) −r sin θ−e cos θ)=((I_0 ω^2 )/2)+((mv_(Gy) ^2 )/2)  2mgr(sin θ_0 +k cos θ_0 −sin θ−k cos θ)    =mξr^2 ω^2 +mr^2 (cos θ−k sin θ)^2 ω^2   2g(sin θ_0 +k cos θ_0 −sin θ−k cos θ)    =r[ξ+(cos θ−k sin θ)^2 ]ω^2   ⇒ω=(√(g/r))(√((2(sin θ_0 +k cos θ_0 −sin θ−k cos θ))/(ξ+(cos θ−k sin θ)^2 )))  y_P =2r sin θ  v_(Py) =−(dy_P /dt)=−2r cos θ (dθ/dt)=2r cos θ ω  ⇒v_(Py) =2 cos θ(√((2gr(sin θ_0 +k cos θ_0 −sin θ−k cos θ))/(ξ+(cos θ−k sin θ)^2 )))  at θ=0:  v_(Py) =(√(([(√2)−((4(2−(√2)))/(3π))]gr)/((3/8)−(4/(9π^2 )))))        ≈1.87948239(√(gr))  +++++++++++++  (dθ/dt)=−(√((2g(sin θ_0 +k cos θ_0 −sin θ−k cos θ))/(r[ξ+(cos θ−k sin θ)^2 ])))  dt=−(√((r[ξ+(cos θ−k sin θ)^2 ])/(2g(sin θ_0 +k cos θ_0 −sin θ−k cos θ)))) dθ  ∫_0 ^T dt=(√(r/g))∫_0 ^(π/4) (√((ξ+(cos θ−k sin θ)^2 )/(2(sin θ_0 +k cos θ_0 −sin θ−k cos θ)))) dθ  T=(√(r/g))∫_0 ^(π/4) (√(((1/2)−((16)/(9π^2 ))+(cos θ−((4 sin θ)/(3π)))^2 )/( (√2)+((4(√2))/( 3π))−2 sin θ−((8 cos θ)/(3π))))) dθ     ≈1.47971689(√(r/g))  +++++++++++++  let f(θ)=(√((2(sin θ_0 +k cos θ_0 −sin θ−k cos θ))/(ξ+(cos θ−k sin θ)^2 )))  ω=(√(g/r))f(θ)  α=(dω/dt)=ω(dω/dθ)=(g/r)f(θ)((df(θ))/dθ)  N(r cos θ−e sin θ)=I_0 α  Nr(cos θ−k sin θ)=mξr^2 ω(dω/dθ)  ⇒(N/(mg))=((((1/2)−((16)/(9π^2 )))f(θ)((df(θ))/dθ))/(cos θ−k sin θ))

e=4r3π=krwithk=43πI0=(12169π2)mr2=ξmr2withξ=12169π2thecenterpointGofdiscmovesonlyvertically,becausenoforceisactinginhorizontaldirection.yG=rsinθ+ecosθ=r(sinθ+kcosθ)vGy=dyGdt=r(cosθksinθ)ωwithω=dθdtatt=0:θ0=π4yG0=r(sinθ0+kcosθ0)mg(yG0rsinθecosθ)=I0ω22+mvGy222mgr(sinθ0+kcosθ0sinθkcosθ)=mξr2ω2+mr2(cosθksinθ)2ω22g(sinθ0+kcosθ0sinθkcosθ)=r[ξ+(cosθksinθ)2]ω2ω=gr2(sinθ0+kcosθ0sinθkcosθ)ξ+(cosθksinθ)2yP=2rsinθvPy=dyPdt=2rcosθdθdt=2rcosθωvPy=2cosθ2gr(sinθ0+kcosθ0sinθkcosθ)ξ+(cosθksinθ)2atθ=0:vPy=[24(22)3π]gr3849π21.87948239gr+++++++++++++dθdt=2g(sinθ0+kcosθ0sinθkcosθ)r[ξ+(cosθksinθ)2]dt=r[ξ+(cosθksinθ)2]2g(sinθ0+kcosθ0sinθkcosθ)dθ0Tdt=rg0π4ξ+(cosθksinθ)22(sinθ0+kcosθ0sinθkcosθ)dθT=rg0π412169π2+(cosθ4sinθ3π)22+423π2sinθ8cosθ3πdθ1.47971689rg+++++++++++++letf(θ)=2(sinθ0+kcosθ0sinθkcosθ)ξ+(cosθksinθ)2ω=grf(θ)α=dωdt=ωdωdθ=grf(θ)df(θ)dθN(rcosθesinθ)=I0αNr(cosθksinθ)=mξr2ωdωdθNmg=(12169π2)f(θ)df(θ)dθcosθksinθ

Commented by ajfour last updated on 23/Nov/24

v_(Py) ^2 =(2gr){(((1/( (√2)))(k+1)−k)/((1/2)(1+k^2 )−k^2 +(1/2)(1−k)^2 ))}  v_(Py) ^2 =(√2)gr{((1−((√2)−1)k)/(1−k))}         ≈ 1.423056 (√(gr))

vPy2=(2gr){12(k+1)k12(1+k2)k2+12(1k)2}vPy2=2gr{1(21)k1k}1.423056gr

Commented by mr W last updated on 23/Nov/24

did you take the lower point as a  hinge? i thought it were a roller.

didyoutakethelowerpointasahinge?ithoughtitwerearoller.

Commented by ajfour last updated on 23/Nov/24

yeah roller Sir, i have used  K.E. = (1/2)I_(cm) ω^2 +(1/2)mv_(cm) ^2

yeahrollerSir,ihaveusedK.E.=12Icmω2+12mvcm2

Commented by ajfour last updated on 23/Nov/24

Commented by ajfour last updated on 23/Nov/24

Excellent sir, thank you v very much.

Excellentsir,thankyouvverymuch.

Commented by mr W last updated on 23/Nov/24

Commented by mr W last updated on 23/Nov/24

please recheck!  at t=0:  θ=45°  P.E.=mg R sin (θ+β)=mg(r sin θ+h cos θ)  at t=T:  P.E.=mgh  v_G =ωr=ωR cos β  K.E.=((I_0 ω^2 )/2)+((mv_G ^2 )/2)=((mω^2 R^2 )/2)((I_0 /(mR^2 ))+cos^2  β)  mgR sin (θ+β)−mgh=((mω^2 R^2 )/2)((I_0 /(mR^2 ))+cos^2  β)  2g[R sin (θ+β)−h]=ω^2 ((I_0 /m)+r^2 )  2g[r sin θ+h cos θ−h]=ω^2 ((1/2)−((16)/(9π^2 ))+1)r^2   2g(sin θ+k cos θ−k)=ω^2 ((1/2)−((16)/(9π^2 ))+1)r  ⇒ω^2 =((2g(sin θ+k cos θ−k))/(r((3/2)−((16)/(9π^2 )))))=((g((√2)+(√2)k−2k))/(r((3/2)−((16)/(9π^2 )))))  v_P =2rω=2(√((((√2)+(√2)k−2k)gr)/((3/2)−((16)/(9π^2 )))))

pleaserecheck!att=0:θ=45°P.E.=mgRsin(θ+β)=mg(rsinθ+hcosθ)att=T:P.E.=mghvG=ωr=ωRcosβK.E.=I0ω22+mvG22=mω2R22(I0mR2+cos2β)mgRsin(θ+β)mgh=mω2R22(I0mR2+cos2β)2g[Rsin(θ+β)h]=ω2(I0m+r2)2g[rsinθ+hcosθh]=ω2(12169π2+1)r22g(sinθ+kcosθk)=ω2(12169π2+1)rω2=2g(sinθ+kcosθk)r(32169π2)=g(2+2k2k)r(32169π2)vP=2rω=2(2+2k2k)gr32169π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com