Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 214012 by ajfour last updated on 24/Nov/24

Commented by ajfour last updated on 24/Nov/24

Outer circle radius is R. Circle with  center A has radius r=R/2.  If △ABC is equilateral, find its  edge length (say a).

OutercircleradiusisR.CirclewithcenterAhasradiusr=R/2.IfABCisequilateral,finditsedgelength(saya).

Answered by mr W last updated on 24/Nov/24

Commented by mr W last updated on 24/Nov/24

c=s−(R/2)  C(s sin α, −(R/2)+s cos α)  B(s sin (α+(π/3)), −(R/2)+s cos (α+(π/3)))  s^2  sin^2  α+(−(R/2)+s cos α)^2 =(R−s+(R/2))^2   s^2  sin^2  (α+(π/3))+ [−(R/2)+s cos (α+(π/3))]^2 =R^2   let λ=(s/R)  λ^2  sin^2  α+(−(1/2)+λ cos α)^2 =((3/2)−λ)^2   (1/4)−λ cos α=(9/4)−3λ  ⇒λ cos α=3λ−2 ⇒λ sin α=2(√((1−λ)(2λ−1)))  λ^2  sin^2  (α+(π/3))+ [−(1/2)+λ cos (α+(π/3))]^2 =1  λ^2 −λ cos (α+(π/3))=(3/4)  λ^2 −(λ/2)(cos α−(√3) sin α)=(3/4)  2λ^2 −3λ+(1/2)+2(√(3(1−λ)(2λ−1)))=0  ⇒λ≈0.52391863, 0.97608137

c=sR2C(ssinα,R2+scosα)B(ssin(α+π3),R2+scos(α+π3))s2sin2α+(R2+scosα)2=(Rs+R2)2s2sin2(α+π3)+[R2+scos(α+π3)]2=R2letλ=sRλ2sin2α+(12+λcosα)2=(32λ)214λcosα=943λλcosα=3λ2λsinα=2(1λ)(2λ1)λ2sin2(α+π3)+[12+λcos(α+π3)]2=1λ2λcos(α+π3)=34λ2λ2(cosα3sinα)=342λ23λ+12+23(1λ)(2λ1)=0λ0.52391863,0.97608137

Commented by mr W last updated on 24/Nov/24

Commented by mr W last updated on 24/Nov/24

Commented by ajfour last updated on 24/Nov/24

Yes Sir . I took △ side =2s  (8s^2 −6s+(1/2))^2 +12(8s^2 −6s+(1/2))+6=0  ⇒  8s^2 +6s+(1/2)=−6−(√(30))    2s=((3±(√(8(√(30))−43)))/4)    ≈  0.97608  ,  0.52392

YesSir.Itookside=2s(8s26s+12)2+12(8s26s+12)+6=08s2+6s+12=6302s=3±8304340.97608,0.52392

Commented by ajfour last updated on 25/Nov/24

Let △ side be 2s.  2s=r+c  And mid point of AC be  M(ssin α, −r+scos α)  BM=s(√3)  B(ssin α+s(√3)cos α, −r+scos α−s(√3)sin α)  OB^( 2) =R^2   s^2 sin^2 α+3s^2 cos^2 α+2(√3)s^2 sin αcos α    +r^2 +s^2 cos^2 α+3s^2 sin^2 α−2(√3)s^2 sin αcos α  −2rscos α+2(√3)rssin α=R^2   ⇒  4s^2 −2rscos α+2(√3)rssin α=R^2 −r^2   say  (s/R)=t,  and  (r/R)=(1/2)  (given)  4t^2 −tcos α+(√3)tsin α=1−(1/4)  .......(i)  Now  C(2ssin α, −r+2scos α)  OC^( 2) =(R−c)^2 =(R+r−2s)^2   4s^2 −4rscos α=(R+2r−2s)(R−2s)  2t^2 −tcos α=(1−t)(1−2t)    .....(ii)  ⇒  tcos α=3t−1     from  ..(i)  (√3)tsin α=1−(1/4)−4t^2 +3t−1  ⇒  3(3t−1)^2 +(3t−4t^2 −(1/4))^2 =3t^2   ⇒  (3t−4t^2 −(1/4))^2 +24t^2 −18t+3=0  (3t−4t^2 −(1/4))^2 −6(3t−4t^2 −(1/4))+(3/2)=0  ⇒  3t−4t^2 −(1/4)=3−(√((15)/2))  ⇒  16t^2 −12t+13−(√(120))=0  (s/R)=t=(3/8)±(√((9/(64))−((52)/(64))+((8(√(30)))/(64))))  2s = side a=(((3±(√(8(√(30))−43)))/4))R ✓  ★

Letsidebe2s.2s=r+cAndmidpointofACbeM(ssinα,r+scosα)BM=s3B(ssinα+s3cosα,r+scosαs3sinα)OB2=R2s2sin2α+3s2cos2α+23s2sinαcosα+r2+s2cos2α+3s2sin2α23s2sinαcosα2rscosα+23rssinα=R24s22rscosα+23rssinα=R2r2saysR=t,andrR=12(given)4t2tcosα+3tsinα=114.......(i)NowC(2ssinα,r+2scosα)OC2=(Rc)2=(R+r2s)24s24rscosα=(R+2r2s)(R2s)2t2tcosα=(1t)(12t).....(ii)tcosα=3t1from..(i)3tsinα=1144t2+3t13(3t1)2+(3t4t214)2=3t2(3t4t214)2+24t218t+3=0(3t4t214)26(3t4t214)+32=03t4t214=315216t212t+13120=0sR=t=38±9645264+830642s=sidea=(3±830434)R

Commented by mr W last updated on 25/Nov/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com