All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 214098 by issac last updated on 28/Nov/24
LetFbeFieldofcharacteristic0Li(i=1,2)betwoalgebraicextensionofF,andL1L2beafieldinF¯(whereF¯isthealgebraicclosureofF)definedby{l1l2∣li∈Li(i=1,2)}1.showthatifL1andL2aregaloisoverFthenL1L2isalsoGaloisoverF2.showthatifG(L1/F)andG(L2/F)areSolvable,thenGal(L1L2/F)isalsoSolvable
Answered by MrGaster last updated on 24/Dec/24
∀σ∈Gal(F_/F)σ(L1)=L1andσ(L2)=L2⏟SinceL1,L2areGaloisoverF⇒σ(L1L2)=σ(L1)σ(L2).>=L1L2∴L1L2isGaloisoverFLetGi=Gal(Li/F),(i=1,2)Considerφ:Gal(L1L2/F)→G1×G2σ(σ∣L1,σ∣L2)ker(φ)={σ∈Gal(L1L2/F):σ∣L1=idL1andσ∣L2=idL2}⇒ker(φ)={idL1L2}⇒φisinjective∀(τ1,τ2)∈G1×G2∃!σ∈Gal(L1L2/F)suchthatσ∣L1=τ1andσ∣L2=τ2⏟Bytheuniversalpropertyofcompositum⇒φissurjectice∴φisanisomorphismG1×G2issolvableifG1andG2aresolvable⇒Gal(L1L2/F)≅G1×G2issolvable
Terms of Service
Privacy Policy
Contact: info@tinkutara.com