Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 214132 by ajfour last updated on 29/Nov/24

Answered by MathematicalUser2357 last updated on 29/Nov/24

b^2 =a^2 +c^2 −2ac cos θ  cos θ=((a^2 −b^2 +c^2 )/(2ac))  Apply the formula cos θ=(√(1−sin^2 θ))  sin θ=(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))  Summarize height h=a sin θ+r  h=a sin θ+r=a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r    Calculate time with equation  Since the height equation is −t^2 +h  So let f(t)=−t^2 +h  f(t)=−t^2 +h=0  t=(√h) ⇒ So, time=t=(√(a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r))    Calculate speed with formula s=(d/dt)f(t)  (d/dt)f(t)=(d/dt)(−t^2 +h)=−2t ⇒ So, speed=−2t=−2(√(a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r))    Please correct me if i′m wrong

b2=a2+c22accosθcosθ=a2b2+c22acApplytheformulacosθ=1sin2θsinθ=1(a2b2+c22ac)2Summarizeheighth=asinθ+rh=asinθ+r=a1(a2b2+c22ac)2+rCalculatetimewithequationSincetheheightequationist2+hSoletf(t)=t2+hf(t)=t2+h=0t=hSo,time=t=a1(a2b2+c22ac)2+rCalculatespeedwithformulas=ddtf(t)ddtf(t)=ddt(t2+h)=2tSo,speed=2t=2a1(a2b2+c22ac)2+rPleasecorrectmeifimwrong

Commented by MathematicalUser2357 last updated on 29/Nov/24

Commented by ajfour last updated on 29/Nov/24

−t^2 +h=0  how?

t2+h=0how?

Commented by MathematicalUser2357 last updated on 29/Nov/24

Since the height equation is −t^2 +h, So let f(t)=−t^2 +h  Plus, to the gravity law, the height equation is y=−t^2 +h

Sincetheheightequationist2+h,Soletf(t)=t2+hPlus,tothegravitylaw,theheightequationisy=t2+h

Commented by ajfour last updated on 29/Nov/24

Its not a free fall..

Itsnotafreefall..

Commented by MathematicalUser2357 last updated on 01/Dec/24

Then linear motion?   { ((x_0 =a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r)),((x=0)),((v_0 =0)),((v=αt)) :}   { ((x=a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r+(1/2)αt^2 )),((x=a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r+vt−(1/2)αt^2 )),((x=a(√(1−(((a^2 −b^2 +c^2 )/(2ac)))^2 ))+r+(1/2)vt)) :}  uh-

Thenlinearmotion?{x0=a1(a2b2+c22ac)2+rx=0v0=0v=αt{x=a1(a2b2+c22ac)2+r+12αt2x=a1(a2b2+c22ac)2+r+vt12αt2x=a1(a2b2+c22ac)2+r+12vtuh

Commented by mr W last updated on 01/Dec/24

Commented by mr W last updated on 03/Dec/24

this pucture shows the   motions described in this question.  for example you are standing on  the top of such a twin ladder.   sudently the spreaders connecting   the ladders are brocken...   the question is with what speed you  hit the floor and what time do you  take.  the floor is slippery, no friction.  i hope you didn′t get seriouly injured.

thispuctureshowsthemotionsdescribedinthisquestion.forexampleyouarestandingonthetopofsuchatwinladder.sudentlythespreadersconnectingtheladdersarebrocken...thequestioniswithwhatspeedyouhitthefloorandwhattimedoyoutake.thefloorisslippery,nofriction.ihopeyoudidntgetserioulyinjured.

Answered by mr W last updated on 01/Dec/24

Commented by mr W last updated on 01/Dec/24

rods have uniform mass distribution.  rod AP: length a, mass m_1   rod BP: length b, mass m_2   M=m_1 +m_2   say μ_1 =(m_1 /M), μ_2 =(m_2 /M)  C=center of mass of both rods together  h_C =height of C above ground=(h/2)    at t=0:  θ=θ_0 =cos^(−1) ((a^2 +b^2 −c^2 )/(2ab))  ((h_0 c)/2)=Δ_(ABP) =((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/4)  ⇒h_0 =((√((a+b+c)(−a+b+c)(a−b+c)(a+b−c)))/(2c))  h_(C0) =(h_0 /2)    at t=T:  θ=π=180°    at t:  let ω=(dθ/dt)  E, F are mass centers of rods  EP=(a/2), FP=(b/2)  AB=l=(√(a^2 +b^2 −2ab cos θ))  (dl/dθ)=((ab sin θ)/( (√(a^2 +b^2 −2ab cos θ))))=((ab sin θ)/l)  EF=(l/2)  EC=l_1 =(m_2 /(m_1 +m_2 ))×EF=((m_2 l)/(2M))  FC=l_2 =(m_1 /(m_1 +m_2 ))×EF=((m_1 l)/(2M))  point C moves only in vertical  direction, because no force is acting  in horizontal direction.  ω_1 =(dϕ_1 /dt)=(dϕ_1 /dθ)×(dθ/dt)=ω(dϕ_1 /dθ)  ω_2 =(dϕ_2 /dt)=(dϕ_2 /dθ)×(dθ/dt)=ω(dϕ_2 /dθ)  ((sin ϕ_1 )/b)=((sin ϕ_2 )/a)=((sin θ)/( l))  ((cos ϕ_1 )/b)×(dϕ_1 /dθ)=((cos ϕ_2 )/a)×(dϕ_2 /dθ)=((cos θ)/l)−((sin θ)/l^2 )×(dl/dθ)  ((cos ϕ_1 )/b)×(ω_1 /ω)=((cos ϕ_2 )/a)×(ω_2 /ω)=((cos θ)/l)−((ab sin^2  θ)/l^3 )  ω_1 =(cos θ−((ab sin^2  θ)/l^2 ))((ωb)/(l cos ϕ_1 ))  ω_1 =(cos θ−((ab sin^2  θ)/l^2 ))((ωb)/( l(√(1− sin^2  ϕ_1 ))))  ⇒ω_1 =(cos θ−((ab sin^2  θ)/l^2 ))(ω/( (√((l^2 /b^2 )− sin^2  θ))))  similarly  ⇒ω_2 =(cos θ−((ab sin^2  θ)/l^2 ))(ω/( (√((l^2 /a^2 )− sin^2  θ))))  ((2h_C l)/2)=((ab sin θ)/2)=Δ_(ABP)   ⇒h_C =((ab sin θ)/(2l))  (dh_C /dθ)=((ab)/2)(((cos θ)/l)−((sin θ)/l^2 )×(dl/dθ))=((ab)/(2l))(cos θ−((ab sin^2  θ)/l^2 ))  u_(1x) =(dl_1 /dt)=((m_2 ω)/(2M))×(dl/dθ)=((m_2 ωab sin θ)/(2Ml))  u_(2x) =(dl_2 /dt)=((m_1 ω)/(2M))×(dl/dθ)=((m_1 ωab sin θ)/(2Ml))  u_(1y) =u_(2y) =−(dh_C /dt)=−ω(dh_C /dθ)=−((ωab)/(2l))(cos θ−((ab sin^2  θ)/l^2 ))  loss of P.E.=gain of K.E.  Mg(h_(C0) −h_C )=(1/2)m_1 (u_(1x) ^2 +u_(1y) ^2 )+(1/2)×((m_1 a^2 ω_1 ^2 )/(12))                             +(1/2)m_2 (u_(2x) ^2 +u_(2y) ^2 )+(1/2)×((m_2 b^2 ω_2 ^2 )/(12))  2Mg(h_(C0) −h_C )=Mu_(1y) ^2 +m_1 u_(1x) ^2 +m_2 u_(2x) ^2 +((m_1 a^2 ω_1 ^2 )/(12))+((m_2 b^2 ω_2 ^2 )/(12))  2Mg(h_(C0) −h_C )=M(((ωab)/(2l)))^2 (cos θ−((ab sin^2  θ)/l^2 ))^2 +(m_1 m_2 ^2 +m_2 m_1 ^2 )(((ωab sin θ)/(2Ml)))^2                         +((m_1 a^2 )/(12))×(cos θ−((ab sin^2  θ)/l^2 ))^2 ((ω^2 /( (l^2 /b^2 )− sin^2  θ)))+((m_2 b^2 )/(12))×(cos θ−((ab sin^2  θ)/l^2 ))^2 ((ω^2 /( (l^2 /b^2 )− sin^2  θ)))  8Mg(h_(C0) −((ab sin θ)/(2l)))=(cos θ−((ab sin^2  θ)/l^2 ))^2 ×((Ma^2 b^2 ω^2 )/l^2 )+((m_1 m_2 a^2 b^2 ω^2 sin^2  θ)/(Ml^2 ))                      +(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 (((m_1 a^2 )/( (l^2 /b^2 )− sin^2  θ))+((m_2 b^2 )/( (l^2 /b^2 )− sin^2  θ)))ω^2   4Mg(h_0 −((ab sin θ)/l))=((m_1 m_2 a^2 b^2 ω^2 sin^2  θ)/(Ml^2 ))+(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 (((m_1 a^2 )/( (l^2 /b^2 )− sin^2  θ))+((m_2 b^2 )/( (l^2 /a^2 )− sin^2  θ))+((3Ma^2 b^2 )/l^2 ))ω^2   ω^2 =((4Mg(h_0 −((ab sin θ)/l)))/(((m_1 m_2 a^2 b^2 sin^2  θ)/(Ml^2 ))+(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 (((m_1 a^2 )/( (l^2 /b^2 )− sin^2  θ))+((m_2 b^2 )/( (l^2 /a^2 )− sin^2  θ))+((3Ma^2 b^2 )/l^2 ))))  ω=(√((4Mg(h_0 −((ab sin θ)/l)))/(((m_1 m_2 a^2 b^2 sin^2  θ)/(Ml^2 ))+(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 (((m_1 a^2 )/( (l^2 /b^2 )− sin^2  θ))+((m_2 b^2 )/( (l^2 /a^2 )− sin^2  θ))+((3Ma^2 b^2 )/l^2 )))))  ⇒ω=(1/(ab))(√((4g(h_0 −((ab sin θ)/l)))/(((μ_1 μ_2  sin^2  θ)/l^2 )+(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 ((μ_1 /( l^2 −b^2  sin^2  θ))+(μ_2 /( l^2 −a^2  sin^2  θ))+(3/l^2 )))))  dt=(dθ/ω)  dt=ab(√((((μ_1 μ_2 sin^2  θ)/l^2 )+(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 ((μ_1 /( l^2 −b^2  sin^2  θ))+(μ_2 /( l^2 −a^2  sin^2  θ))+(3/l^2 )))/(4g(h_0 −((ab sin θ)/l)))))dθ  T=ab∫_θ_0  ^π (√((((μ_1 μ_2 sin^2  θ)/l^2 )+(1/3)(cos θ−((ab sin^2  θ)/l^2 ))^2 ((μ_1 /( l^2 −b^2  sin^2  θ))+(μ_2 /( l^2 −a^2  sin^2  θ))+(3/l^2 )))/(4g(h_0 −((ab sin θ)/l)))))dθ  u_(Py) =a cos ϕ_1  ω_1 =a(((cos θ)/l)−((ab sin^2  θ)/l^3 ))bω  ⇒u_(Py) =(cos θ−((ab sin^2  θ)/l^2 ))((ωab)/( l))    at t=T:  θ=π  ω=(((a+b)(√(3gh_0 )))/(ab))  u_(Py) =(√(3gh_0 )) >(√(2gh_0 ))  recall: a ball released at point P  hits the ground with a speed (√(2gh_0 )).  ++++++++++  ω_1 =(cos θ−((ab sin^2  θ)/l^2 ))(ω/( (√((l^2 /b^2 )− sin^2  θ))))  α_1 =(dω_1 /dt)=(dω_1 /dθ)×(dθ/dt)=ω(dω_1 /dθ)  −N_1 a cos ϕ_1 +m_1 g×((a cos ϕ_1 )/2)=((m_1 a^2 α_1 )/3)  (N_1 /(m_1 g))=(1/2)−(a/(3g cos ϕ_1 ))×ω(dω_1 /dθ)  (N_1 /(m_1 g))=(1/2)−((aω)/(3g(√(1−((b^2  sin^2  θ)/l^2 )))))×(dω_1 /dθ)  similarly  (N_2 /(m_2 g))=(1/2)−((bω)/(3g(√(1−((a^2  sin^2  θ)/l^2 )))))×(dω_2 /dθ)

rodshaveuniformmassdistribution.rodAP:lengtha,massm1rodBP:lengthb,massm2M=m1+m2sayμ1=m1M,μ2=m2MC=centerofmassofbothrodstogetherhC=heightofCaboveground=h2att=0:θ=θ0=cos1a2+b2c22abh0c2=ΔABP=(a+b+c)(a+b+c)(ab+c)(a+bc)4h0=(a+b+c)(a+b+c)(ab+c)(a+bc)2chC0=h02att=T:θ=π=180°att:letω=dθdtE,FaremasscentersofrodsEP=a2,FP=b2AB=l=a2+b22abcosθdldθ=absinθa2+b22abcosθ=absinθlEF=l2EC=l1=m2m1+m2×EF=m2l2MFC=l2=m1m1+m2×EF=m1l2MpointCmovesonlyinverticaldirection,becausenoforceisactinginhorizontaldirection.ω1=dφ1dt=dφ1dθ×dθdt=ωdφ1dθω2=dφ2dt=dφ2dθ×dθdt=ωdφ2dθsinφ1b=sinφ2a=sinθlcosφ1b×dφ1dθ=cosφ2a×dφ2dθ=cosθlsinθl2×dldθcosφ1b×ω1ω=cosφ2a×ω2ω=cosθlabsin2θl3ω1=(cosθabsin2θl2)ωblcosφ1ω1=(cosθabsin2θl2)ωbl1sin2φ1ω1=(cosθabsin2θl2)ωl2b2sin2θsimilarlyω2=(cosθabsin2θl2)ωl2a2sin2θ2hCl2=absinθ2=ΔABPhC=absinθ2ldhCdθ=ab2(cosθlsinθl2×dldθ)=ab2l(cosθabsin2θl2)u1x=dl1dt=m2ω2M×dldθ=m2ωabsinθ2Mlu2x=dl2dt=m1ω2M×dldθ=m1ωabsinθ2Mlu1y=u2y=dhCdt=ωdhCdθ=ωab2l(cosθabsin2θl2)lossofP.E.=gainofK.E.Mg(hC0hC)=12m1(u1x2+u1y2)+12×m1a2ω1212+12m2(u2x2+u2y2)+12×m2b2ω22122Mg(hC0hC)=Mu1y2+m1u1x2+m2u2x2+m1a2ω1212+m2b2ω22122Mg(hC0hC)=M(ωab2l)2(cosθabsin2θl2)2+(m1m22+m2m12)(ωabsinθ2Ml)2+m1a212×(cosθabsin2θl2)2(ω2l2b2sin2θ)+m2b212×(cosθabsin2θl2)2(ω2l2b2sin2θ)8Mg(hC0absinθ2l)=(cosθabsin2θl2)2×Ma2b2ω2l2+m1m2a2b2ω2sin2θMl2+13(cosθabsin2θl2)2(m1a2l2b2sin2θ+m2b2l2b2sin2θ)ω24Mg(h0absinθl)=m1m2a2b2ω2sin2θMl2+13(cosθabsin2θl2)2(m1a2l2b2sin2θ+m2b2l2a2sin2θ+3Ma2b2l2)ω2ω2=4Mg(h0absinθl)m1m2a2b2sin2θMl2+13(cosθabsin2θl2)2(m1a2l2b2sin2θ+m2b2l2a2sin2θ+3Ma2b2l2)ω=4Mg(h0absinθl)m1m2a2b2sin2θMl2+13(cosθabsin2θl2)2(m1a2l2b2sin2θ+m2b2l2a2sin2θ+3Ma2b2l2)ω=1ab4g(h0absinθl)μ1μ2sin2θl2+13(cosθabsin2θl2)2(μ1l2b2sin2θ+μ2l2a2sin2θ+3l2)dt=dθωdt=abμ1μ2sin2θl2+13(cosθabsin2θl2)2(μ1l2b2sin2θ+μ2l2a2sin2θ+3l2)4g(h0absinθl)dθT=abθ0πμ1μ2sin2θl2+13(cosθabsin2θl2)2(μ1l2b2sin2θ+μ2l2a2sin2θ+3l2)4g(h0absinθl)dθuPy=acosφ1ω1=a(cosθlabsin2θl3)bωuPy=(cosθabsin2θl2)ωablatt=T:θ=πω=(a+b)3gh0abuPy=3gh0>2gh0recall:aballreleasedatpointPhitsthegroundwithaspeed2gh0.++++++++++ω1=(cosθabsin2θl2)ωl2b2sin2θα1=dω1dt=dω1dθ×dθdt=ωdω1dθN1acosφ1+m1g×acosφ12=m1a2α13N1m1g=12a3gcosφ1×ωdω1dθN1m1g=12aω3g1b2sin2θl2×dω1dθsimilarlyN2m2g=12bω3g1a2sin2θl2×dω2dθ

Commented by mr W last updated on 30/Nov/24

Commented by mr W last updated on 30/Nov/24

in all these cases the point P hits  the ground with the same speed  regardless which relation the  lengthes and the masses of the rods  have.

inallthesecasesthepointPhitsthegroundwiththesamespeedregardlesswhichrelationthelengthesandthemassesoftherodshave.

Commented by mr W last updated on 30/Nov/24

Commented by mr W last updated on 30/Nov/24

how is it possible that the point P  hits the ground with a larger speed  than a ball from the same height?

howisitpossiblethatthepointPhitsthegroundwithalargerspeedthanaballfromthesameheight?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com