Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 21422 by Tinkutara last updated on 23/Sep/17

Find all integer values of a such that  the quadratic expression  (x + a)(x + 1991) + 1 can be factored  as a product (x + b)(x + c) where b and  c are integers.

$$\mathrm{Find}\:\mathrm{all}\:\mathrm{integer}\:\mathrm{values}\:\mathrm{of}\:{a}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{quadratic}\:\mathrm{expression} \\ $$$$\left({x}\:+\:{a}\right)\left({x}\:+\:\mathrm{1991}\right)\:+\:\mathrm{1}\:\mathrm{can}\:\mathrm{be}\:\mathrm{factored} \\ $$$$\mathrm{as}\:\mathrm{a}\:\mathrm{product}\:\left({x}\:+\:{b}\right)\left({x}\:+\:{c}\right)\:\mathrm{where}\:{b}\:\mathrm{and} \\ $$$${c}\:\mathrm{are}\:\mathrm{integers}. \\ $$

Commented by Tikufly last updated on 23/Sep/17

a=1993 or a=1989

$${a}=\mathrm{1993}\:{or}\:{a}=\mathrm{1989} \\ $$

Commented by Tikufly last updated on 23/Sep/17

Sol  (x+b)(x+c)=(x+a)(x+1991)+1  =>x^2 +(b+c)x+bc=x^2 +(a+1991)x+1991a+1  then b+c=(a+1991) and bc=(1991a+1)    we know that  (b+c)^2 −4bc=(b−c)^2   =>(a+1991)^2 −4(1991a+1)=(b−c)^2   =>(a+1991)^2 −4×a×1991−4=(b−c)^2   =>(a−1991)^2 −4=(b−c)^2   =>(a−1991)^2 −(b−c)^2 =4  The diff of two squares of integers is 4.  This is possible if and only if b−c=0  =>(a−1991)^2 −2^2 =0  =>(a−1991−2)(a−1991+2)=0  =>a=1993 or a=1989

$$\mathrm{Sol} \\ $$$$\left({x}+{b}\right)\left({x}+{c}\right)=\left({x}+{a}\right)\left({x}+\mathrm{1991}\right)+\mathrm{1} \\ $$$$=>{x}^{\mathrm{2}} +\left({b}+{c}\right){x}+{bc}={x}^{\mathrm{2}} +\left({a}+\mathrm{1991}\right){x}+\mathrm{1991}{a}+\mathrm{1} \\ $$$${then}\:{b}+{c}=\left({a}+\mathrm{1991}\right)\:{and}\:{bc}=\left(\mathrm{1991}{a}+\mathrm{1}\right) \\ $$$$ \\ $$$${we}\:{know}\:{that} \\ $$$$\left({b}+{c}\right)^{\mathrm{2}} −\mathrm{4}{bc}=\left({b}−{c}\right)^{\mathrm{2}} \\ $$$$=>\left({a}+\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1991}{a}+\mathrm{1}\right)=\left({b}−{c}\right)^{\mathrm{2}} \\ $$$$=>\left({a}+\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}×{a}×\mathrm{1991}−\mathrm{4}=\left({b}−{c}\right)^{\mathrm{2}} \\ $$$$=>\left({a}−\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}=\left({b}−{c}\right)^{\mathrm{2}} \\ $$$$=>\left({a}−\mathrm{1991}\right)^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$${The}\:{diff}\:{of}\:{two}\:{squares}\:{of}\:{integers}\:{is}\:\mathrm{4}. \\ $$$${This}\:{is}\:{possible}\:{if}\:{and}\:{only}\:{if}\:{b}−{c}=\mathrm{0} \\ $$$$=>\left({a}−\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{2}^{\mathrm{2}} =\mathrm{0} \\ $$$$=>\left({a}−\mathrm{1991}−\mathrm{2}\right)\left({a}−\mathrm{1991}+\mathrm{2}\right)=\mathrm{0} \\ $$$$=>{a}=\mathrm{1993}\:{or}\:{a}=\mathrm{1989} \\ $$

Commented by Tinkutara last updated on 23/Sep/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Answered by mrW1 last updated on 24/Sep/17

if (x+a)(x+1991)+1 can be factored  as (x+b)(x+c), it means the equation  (x+a)(x+1991)+1=0   has two integer solutions: −b and −c.    (x+a)(x+1991)+1=0  x^2 +(a+1991)x+(1991a+1)=0  ⇒x=((−(a+1991)±(√((a+1991)^2 −4(1991a+1))))/2)  =((−(a+1991)±(√((a−1991)^2 −4)))/2)    case 1:  a is odd, i.e. a=2i+1  (2i+1−1991)^2 −4=(2k)^2   ⇒(i−995)^2 −1=k^2   ⇒(i−995)^2 −k^2 =1  ⇒(i+k−995)(i−k−995)=1  ⇒i+k−995=±1  ⇒i−k−995=±1  ⇒i=±1+995=996 or 994, k=0  ⇒a=2×996+1=1993 or  ⇒a=2×994+1=1989     case 2:  a is even, i.e. a=2i  (2i−1991)^2 −4=(2k+1)^2   (2i−1991)^2 −(2k+1)^2 =4  (2i−1991+2k+1)(2i−1991−2k−1)=4  (i+k−995)(i−k−996)=1  ⇒i+k−995=±1  ⇒i−k−996=±1  ⇒i=((±2+995+996)/2)≠integer  ⇒no solution for case 2    ⇒a=1989 or 1993

$$\mathrm{if}\:\left(\mathrm{x}+\mathrm{a}\right)\left(\mathrm{x}+\mathrm{1991}\right)+\mathrm{1}\:\mathrm{can}\:\mathrm{be}\:\mathrm{factored} \\ $$$$\mathrm{as}\:\left(\mathrm{x}+\mathrm{b}\right)\left(\mathrm{x}+\mathrm{c}\right),\:\mathrm{it}\:\mathrm{means}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\left(\mathrm{x}+\mathrm{a}\right)\left(\mathrm{x}+\mathrm{1991}\right)+\mathrm{1}=\mathrm{0}\: \\ $$$$\mathrm{has}\:\mathrm{two}\:\mathrm{integer}\:\mathrm{solutions}:\:−\mathrm{b}\:\mathrm{and}\:−\mathrm{c}. \\ $$$$ \\ $$$$\left(\mathrm{x}+\mathrm{a}\right)\left(\mathrm{x}+\mathrm{1991}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{x}^{\mathrm{2}} +\left(\mathrm{a}+\mathrm{1991}\right)\mathrm{x}+\left(\mathrm{1991a}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\frac{−\left(\mathrm{a}+\mathrm{1991}\right)\pm\sqrt{\left(\mathrm{a}+\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1991a}+\mathrm{1}\right)}}{\mathrm{2}} \\ $$$$=\frac{−\left(\mathrm{a}+\mathrm{1991}\right)\pm\sqrt{\left(\mathrm{a}−\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}}}{\mathrm{2}} \\ $$$$ \\ $$$$\mathrm{case}\:\mathrm{1}:\:\:\mathrm{a}\:\mathrm{is}\:\mathrm{odd},\:\mathrm{i}.\mathrm{e}.\:\mathrm{a}=\mathrm{2i}+\mathrm{1} \\ $$$$\left(\mathrm{2i}+\mathrm{1}−\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}=\left(\mathrm{2k}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{i}−\mathrm{995}\right)^{\mathrm{2}} −\mathrm{1}=\mathrm{k}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{i}−\mathrm{995}\right)^{\mathrm{2}} −\mathrm{k}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{i}+\mathrm{k}−\mathrm{995}\right)\left(\mathrm{i}−\mathrm{k}−\mathrm{995}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{i}+\mathrm{k}−\mathrm{995}=\pm\mathrm{1} \\ $$$$\Rightarrow\mathrm{i}−\mathrm{k}−\mathrm{995}=\pm\mathrm{1} \\ $$$$\Rightarrow\mathrm{i}=\pm\mathrm{1}+\mathrm{995}=\mathrm{996}\:\mathrm{or}\:\mathrm{994},\:\mathrm{k}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{a}=\mathrm{2}×\mathrm{996}+\mathrm{1}=\mathrm{1993}\:\mathrm{or} \\ $$$$\Rightarrow\mathrm{a}=\mathrm{2}×\mathrm{994}+\mathrm{1}=\mathrm{1989}\: \\ $$$$ \\ $$$$\mathrm{case}\:\mathrm{2}:\:\:\mathrm{a}\:\mathrm{is}\:\mathrm{even},\:\mathrm{i}.\mathrm{e}.\:\mathrm{a}=\mathrm{2i} \\ $$$$\left(\mathrm{2i}−\mathrm{1991}\right)^{\mathrm{2}} −\mathrm{4}=\left(\mathrm{2k}+\mathrm{1}\right)^{\mathrm{2}} \\ $$$$\left(\mathrm{2i}−\mathrm{1991}\right)^{\mathrm{2}} −\left(\mathrm{2k}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4} \\ $$$$\left(\mathrm{2i}−\mathrm{1991}+\mathrm{2k}+\mathrm{1}\right)\left(\mathrm{2i}−\mathrm{1991}−\mathrm{2k}−\mathrm{1}\right)=\mathrm{4} \\ $$$$\left(\mathrm{i}+\mathrm{k}−\mathrm{995}\right)\left(\mathrm{i}−\mathrm{k}−\mathrm{996}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{i}+\mathrm{k}−\mathrm{995}=\pm\mathrm{1} \\ $$$$\Rightarrow\mathrm{i}−\mathrm{k}−\mathrm{996}=\pm\mathrm{1} \\ $$$$\Rightarrow\mathrm{i}=\frac{\pm\mathrm{2}+\mathrm{995}+\mathrm{996}}{\mathrm{2}}\neq\mathrm{integer} \\ $$$$\Rightarrow\mathrm{no}\:\mathrm{solution}\:\mathrm{for}\:\mathrm{case}\:\mathrm{2} \\ $$$$ \\ $$$$\Rightarrow\mathrm{a}=\mathrm{1989}\:\mathrm{or}\:\mathrm{1993} \\ $$

Commented by Tinkutara last updated on 24/Sep/17

Thank you very much Sir!  More specific and proving!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$$$\mathrm{More}\:\mathrm{specific}\:\mathrm{and}\:\mathrm{proving}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com