Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 214302 by universe last updated on 04/Dec/24

Σ_(n=1) ^∞  (1/(n(4n−1)^2 ))= ?

n=11n(4n1)2=?

Answered by MrGaster last updated on 24/Dec/24

(4n−1)^2 =16n^2 −8n+1  ∴Σ_(n=1) ^∞ (1/(n(16n^2 −8n+1)))  ⇛Σ_(n=1) ^∞ (1/(16n^3 −8n^2 +n))  Σ_(n=1) ^∞ ((1/(16n^2 ))−(1/(16n^3 ))+(1/(16n))−(1/(8n^2 ))+(1/(8n^3 ))−(1/(8n))+(1/n))  ⇛Σ_(n=1) ^∞ ((1/(16n^2 ))−(1/(16n^3 ))−(1/(8n^2 ))+(1/(8n^3 ))+(7/(16n)))  ⇛Σ_(n=1) ^∞ (−(1/(16n^3 ))+(1/(8n^3 ))−(1/(16n^2 ))−(1/(8n^2 ))+(7/(16n)))  ⇛Σ_(n=1) ^∞ ((1/(8n^3 ))−(1/(16n^3 ))−(3/(16n^2 ))+(7/(16n)))  ⇛Σ_(n=1) ^∞ ((1/(16n^3 ))−(3/(16n^2 ))+(7/(16n)))  ⇛(1/(16))Σ_(n=1) ^∞ ((1/n^3 )−(3/n^2 )+(7/n))  ⇛(1/(16))(ζ(3)−3ζ(2)+7ζ(1))  ⇛(1/(16))(ζ(3)−3ζ(2))  ⇛(1/(16))(ζ(3)_(simplification)  −3∙(π^2 /6)_(simplification) )  =(1/(16))(ζ(3)−(π^2 /2))

(4n1)2=16n28n+1n=11n(16n28n+1)n=1116n38n2+nn=1(116n2116n3+116n18n2+18n318n+1n)n=1(116n2116n318n2+18n3+716n)n=1(116n3+18n3116n218n2+716n)n=1(18n3116n3316n2+716n)n=1(116n3316n2+716n)116n=1(1n33n2+7n)116(ζ(3)3ζ(2)+7ζ(1))116(ζ(3)3ζ(2))116(ζ(3)simplification3π26simplification)=116(ζ(3)π22)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com