All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 214341 by liuxinnan last updated on 06/Dec/24
∫dx3+cosx=?
Answered by chhaythean last updated on 06/Dec/24
let,t=tanx2⇒dt=12sec2(x2)dxordt=12(1+tan2(x2))dx=12(1+t2)dx⇒cosx=1−t21+t2⇒∫dx3+cosx=2∫1(1+t)2×13+1−t21+t2dt=2∫1(1+t2)×13+3t2+1−t21+t2dt=2∫dt4+2t2=∫dt2+t2=∫dt(2)2+t2=12arctan(t2)+C=22arctan(tan(x2)2)+C
Answered by shunmisaki007 last updated on 06/Dec/24
Lett=tan(x2);cos(x2)=11+t2,sin(x2)=t1+t2,cos(x)=cos2(x2)−sin2(x2)=1−t21+t2,dt=12sec2(x2)dx=1+t22dxordx=21+t2dt.So∫dx3+cos(x)=∫21+t23+1−t21+t2dt=∫24+2t2dt=∫12+t2dtLett=2tan(u);dt=2sec2(u)du.So∫12+t2dt=∫2sec2(u)2+2tan2(u)du=22∫du=22u+C=22tan−1(2t2)+C=22tan−1(2tan(x2)2)+C∴∫dx3+cos(x)=22tan−1(2tan(x2)2)+C★
Terms of Service
Privacy Policy
Contact: info@tinkutara.com