Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 214499 by hardmath last updated on 10/Dec/24

 { ((x^2   +  (x  +  3y)  =  11)),((y^2   +  (y  +  3x)  =  29)) :}     ⇒    x + y = ?

{x2+(x+3y)=11y2+(y+3x)=29x+y=?

Commented by Frix last updated on 10/Dec/24

4 solutions  x+y=t  t^4 +4t^3 −108t^2 +352t+4=0  No nice solution.

4solutionsx+y=tt4+4t3108t2+352t+4=0Nonicesolution.

Answered by A5T last updated on 10/Dec/24

(i)+(ii)⇒x^2 +y^2 +4(x+y)−40=0  ⇒(((x−y)^2 +(x+y)^2 )/2)+4(x+y)−40=0...(i)  (i)−(ii)⇒x^2 −y^2 −2(x−y)+18=0...(ii)  x+y=p; x−y=q  ⇒(i):((p^2 +q^2 )/2)+4p−40=0⇒p^2 +8p+q^2 −80=0  (ii): pq−2q+18=0⇒q=((18)/(2−p))  q in(i)⇒p^2 +8p+((324)/((2−p)^2 ))−((80(2−p)^2 )/((2−p)^2 ))=0  ⇒p^4 +4p^3 −108p^2 +352p+4=0

(i)+(ii)x2+y2+4(x+y)40=0(xy)2+(x+y)22+4(x+y)40=0...(i)(i)(ii)x2y22(xy)+18=0...(ii)x+y=p;xy=q(i):p2+q22+4p40=0p2+8p+q280=0(ii):pq2q+18=0q=182pqin(i)p2+8p+324(2p)280(2p)2(2p)2=0p4+4p3108p2+352p+4=0

Commented by Rasheed.Sindhi last updated on 10/Dec/24

x^2 +y^2 =(x+y)^2 −2xy  perhaps you have missed −2xy sir!

x2+y2=(x+y)22xyperhapsyouhavemissed2xysir!

Commented by A5T last updated on 10/Dec/24

Took another path, thanks.

Tookanotherpath,thanks.

Answered by Rasheed.Sindhi last updated on 11/Dec/24

 { ((x^2   +  (x  +  3y)  =  11)),((y^2   +  (y  +  3x)  =  29)) :}     ⇒    x + y = ?  Adding:  x^2 +y^2 +(x+y)+3(x+y)=40  (x+y)^2 −2xy+4(x+y)=40  but xy=(1/4){(x+y)^2 −(x−y)^2 }  (x+y)^2 −2[(1/4){(x+y)^2 −(x−y)^2 }]+4(x+y)=40  let x+y=a,x−y=b  a^2 −(1/2){a^2 −b^2 }+4a=40  a^2 +b^2 +8a=80......(i)  Subtracting:  x^2 −y^2 +(x−y)−3(x−y)=−18  (x−y)(x+y)−2(x−y)=−18  (x−y)(x+y−2)=−18  b(a−2)=−18.........(ii)  b=((18)/(2−a))  putting this in (i)  a^2 +(((18)/(2−a)))^2 +8a=80  a^2 (2−a)^2 +324+8a(2−a)^2 =80(2−a)^2   a^2 (a^2 −4a+4)+324+8a(a^2 −4a+4)=80a^2 −320a+320  a^2 (a^2 −4a+4)+324+8a(a^2 −4a+4)=80a^2 −320a+320  a^4 −4a^3 +4a^2 +8a^3 −32a^2 +32a+324−80a^2 +320a−320=0  a^4 +4a^3 −108a^2 +352a+4  ....

{x2+(x+3y)=11y2+(y+3x)=29x+y=?Adding:x2+y2+(x+y)+3(x+y)=40(x+y)22xy+4(x+y)=40butxy=14{(x+y)2(xy)2}(x+y)22[14{(x+y)2(xy)2}]+4(x+y)=40letx+y=a,xy=ba212{a2b2}+4a=40a2+b2+8a=80......(i)Subtracting:x2y2+(xy)3(xy)=18(xy)(x+y)2(xy)=18(xy)(x+y2)=18b(a2)=18.........(ii)b=182aputtingthisin(i)a2+(182a)2+8a=80a2(2a)2+324+8a(2a)2=80(2a)2a2(a24a+4)+324+8a(a24a+4)=80a2320a+320a2(a24a+4)+324+8a(a24a+4)=80a2320a+320a44a3+4a2+8a332a2+32a+32480a2+320a320=0a4+4a3108a2+352a+4....

Commented by A5T last updated on 10/Dec/24

a^4 +4a^3 −108a^2 +352a+4=0 should be the   correct equation.

a4+4a3108a2+352a+4=0shouldbethecorrectequation.

Answered by ajfour last updated on 11/Dec/24

x+3y=p  y+3x=q  4(x+y)=p+q=4t  x=((3q−p)/8)  y=((3p−q)/8)  y−x=((p−q)/2)  (3q−p)^2 +(3p−q)^2 +256t=2560  10(p^2 +q^2 )+256t=2560     ...(i)  or  5(p+q)^2 +5(p−q)^2 +256(t−10)=0  y^2 −x^2 +2(x−y)=18  (y−x)(t−2)=18  (p−q)(t−2)=36     ....(ii)  80t^2 +((5×36×36)/((t−2)^2 ))+256(t−10)=0  80(t−2)^2 +((180×36)/((t−2)^2 ))+24×24(t−2)      =2560+320−1152  ⇒  (((t−2)^2 )/9)+(9/((t−2)^2 ))+(4/5)(t−2)      =(1/9)(32+4−((72)/5))=((12)/5)  let  ((t−2)/3)=z  z^2 +(1/z^2 )+((12)/5)(z−1)=0

x+3y=py+3x=q4(x+y)=p+q=4tx=3qp8y=3pq8yx=pq2(3qp)2+(3pq)2+256t=256010(p2+q2)+256t=2560...(i)or5(p+q)2+5(pq)2+256(t10)=0y2x2+2(xy)=18(yx)(t2)=18(pq)(t2)=36....(ii)80t2+5×36×36(t2)2+256(t10)=080(t2)2+180×36(t2)2+24×24(t2)=2560+3201152(t2)29+9(t2)2+45(t2)=19(32+4725)=125lett23=zz2+1z2+125(z1)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com