Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 214511 by issac last updated on 11/Dec/24

Let′s R(z) define as   R(z)=((π ∫_0 ^( z)  f^2 (t)dt)/(2π ∫_0 ^( z)  f(t)(√(1+(f^((1)) (t))^2 ))dt))  and both integral  ∫_0 ^( ∞)  f^( 2) (t)dt , ∫_0 ^( ∞)  f(t)(√(1+(f^((1)) (t))^2 ))dt =∞  lim_(z→∞)  ((π ∫_0 ^( z) f^( 2) (t)dt)/(2π ∫_0 ^( z)  f(t)(√(1+(f^((1)) (t))^2 ))dt))  =lim_(z→∞)  ((π f(z))/(2π (√(1+(f^((1)) (z))^2 )))) ..??

LetsR(z)defineasR(z)=π0zf2(t)dt2π0zf(t)1+(f(1)(t))2dtandbothintegral0f2(t)dt,0f(t)1+(f(1)(t))2dt=limzπ0zf2(t)dt2π0zf(t)1+(f(1)(t))2dt=limzπf(z)2π1+(f(1)(z))2..??

Terms of Service

Privacy Policy

Contact: info@tinkutara.com