Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215280 by universe last updated on 02/Jan/25

volume of solids generated by revolving  the region bounded by the curve and line   the y-axis   y=x ,y = x/2 ,x = 2

volumeofsolidsgeneratedbyrevolvingtheregionboundedbythecurveandlinetheyaxisy=x,y=x/2,x=2

Commented by mr W last updated on 02/Jan/25

rotated about which axis?

rotatedaboutwhichaxis?

Commented by universe last updated on 02/Jan/25

y −axis

yaxis

Answered by MrGaster last updated on 02/Jan/25

V=π∫_a ^b [f(x)]^2 −[g(x)]^2 dx  V=π∫_0 ^2 [x]^2 −[(π/2)]^2 dx  V=π∫_0 ^2 x^2 −(x^2 /4)dx  V=π∫_0 ^2 ((4x^2 )/4)−(x^2 /4)dx  V=π∫_0 ^2 ((3x^2 )/4)dx  V=π[((3x^3 )/(12))]_0 ^2   V=π(((3∙2^3 )/(12))−((3∙0^3 )/(12)))  V=π(((3∙8)/(12)))  V=π(((24)/(12)))  V=2π

V=πab[f(x)]2[g(x)]2dxV=π02[x]2[π2]2dxV=π02x2x24dxV=π024x24x24dxV=π023x24dxV=π[3x312]02V=π(3231230312)V=π(3812)V=π(2412)V=2π

Answered by mr W last updated on 02/Jan/25

if rotated about y−axis:  V=2π×((2×2)/3)×((2×1)/2)=((8π)/3)    if rotated about x−axis:  V=2π((2/3)×((2×2)/2)−(1/3)×((2×1)/2))=2π

ifrotatedaboutyaxis:V=2π×2×23×2×12=8π3ifrotatedaboutxaxis:V=2π(23×2×2213×2×12)=2π

Commented by universe last updated on 02/Jan/25

without integral sir   can u explain little bit

withoutintegralsircanuexplainlittlebit

Commented by mr W last updated on 02/Jan/25

V_(about y−axis) =∫_A 2πxdA=2πx_S A  V_(about x−axis) =∫_A 2πydA=2πy_S A  (x_S , y_S )=center of area  see also Q158237

Vaboutyaxis=A2πxdA=2πxSAVaboutxaxis=A2πydA=2πySA(xS,yS)=centerofareaseealsoQ158237

Commented by universe last updated on 02/Jan/25

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com