Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 215282 by arkanmathematics63 last updated on 02/Jan/25

Show that x=64 and y=729   (x)^(1/3) +(y)^(1/3) =13  (√x)+(√y)=35

Showthatx=64andy=729x3+y3=13x+y=35

Commented by Ghisom last updated on 02/Jan/25

to “show that x=64 and y=729” it′s enough  to insert:  ((64))^(1/3) +((729))^(1/3) =4+9=13  (√(64))+(√(729))=8+27=35

toshowthatx=64andy=729itsenoughtoinsert:643+7293=4+9=1364+729=8+27=35

Commented by TonyCWX08 last updated on 02/Jan/25

You got a point...................................

Yougotapoint...................................

Commented by Ghisom last updated on 02/Jan/25

...btw there are no solutions ∉R

...btwtherearenosolutionsR

Answered by TonyCWX08 last updated on 02/Jan/25

Let u=x^6 , v=y^6   u^2 +v^2 =13⇒p_2 =13  u^3 +v^3 =35⇒p_3 =35    By Newton′s Identity,  p_1 =e_1     p_2 =e_1 ^2 −2e_2 ⇒e_2 =((p_1 ^2 −13)/2)    p_3 =e_1 ^3 −2e_1 e_2 +3e_3   35=p_1 ^3 −2(p_1 )(((p_1 ^2 −13)/2))  ((39p_1 −p_1 ^3 )/2)=35  39p_1 −p_1 ^3 =70  p_1 =−7, 2, 5    u+v=−7  u+v=2  u+v=5    Case 1:  u+v=−7⇒u=−7−v  (−7−v)^2 +v^2 =13⇒No Solution in real world    Case 2:  u+v=2⇒u=2−v  (2−v)^2 +v^2 =13  ⇒(u,v)=(2,3) or (3,2)  ⇒(x,y)=(64,729) or (729,64)    Case 3:  u+v=5⇒u=5−v  (5−v)^2 +v^2 =13  ⇒(u,v)=(((2−(√(22)))/2),((2+(√(22)))/2)) or (((2+(√(22)))/2),((2−(√(22)))/2))  ⇒(x,y)=No solution in real world

Letu=x6,v=y6u2+v2=13p2=13u3+v3=35p3=35ByNewtonsIdentity,p1=e1p2=e122e2e2=p12132p3=e132e1e2+3e335=p132(p1)(p12132)39p1p132=3539p1p13=70p1=7,2,5u+v=7u+v=2u+v=5Case1:u+v=7u=7v(7v)2+v2=13NoSolutioninrealworldCase2:u+v=2u=2v(2v)2+v2=13(u,v)=(2,3)or(3,2)(x,y)=(64,729)or(729,64)Case3:u+v=5u=5v(5v)2+v2=13(u,v)=(2222,2+222)or(2+222,2222)(x,y)=Nosolutioninrealworld

Commented by arkanmathematics63 last updated on 12/Jan/25

WOW!  Nice Solution. Thank you Sir.

WOW!NiceSolution.ThankyouSir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com