Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 215312 by ajfour last updated on 02/Jan/25

Commented by mr W last updated on 06/Jan/25

please try Q215395

pleasetryQ215395

Answered by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

I=((ML^2 )/(12))  b(tan θ+tan φ)=((3L)/2)  ⇒tan φ=((3L)/(2b))−tan θ  mu sin θ=mU sin φ  ⇒U=((u sin θ)/(sin φ))  mu cos θ−J=mU cos φ  ⇒J=mu(cos θ−((sin θ)/(tan φ)))  MV=J  ⇒V=((mu)/(M(cos θ−((sin θ)/(tan φ)))))  ((ML^2 ω)/(12))=J((L/2)−b tan θ)  ⇒ω=((12mu((1/2)−((b tan θ)/L)))/(ML(cos θ−((sin θ)/(tan φ)))))  ((mU^2 )/2)+((MV^2 )/2)+(1/2)×((ML^2 ω^2 )/(12))=((mu^2 )/2)  ((sin^2  θ)/(sin^2  φ))+(m/(M(cos θ−((sin θ)/(tan φ)))^2 ))+((12m((1/2)−((b tan θ)/L))^2 )/(M(cos θ−((sin θ)/(tan φ)))^2 ))=1  ((μ[1+12((1/2)−((b tan θ)/L))^2 ])/((cos θ−((sin θ)/(tan φ)))^2 ))=1−((sin^2  θ)/(sin^2  φ))  with μ=(m/M), ξ=(b/L)  ⇒((μ[1+12((1/2)−ξ tan θ)^2 ](1+tan^2  θ)^2 )/((1−((tan θ)/(tan φ)))^2 ))+(((tan θ)/(tan φ)))^2 =1  with tan φ=(3/(2ξ))−tan θ  ==================  θ_1 =ωt=((12μ((1/2)−ξ tan θ)ut)/(L(cos θ−((sin θ)/(tan φ)))))  x_1 =(L/2)  y_1 =b+Vt=ξL+((μut)/(cos θ−((sin θ)/(tan φ))))  x_2 =b tan θ+Ut sin φ=ξL tan θ+ut sin θ  y_2 =b−Ut cos φ=ξL−((ut sin θ)/(tan φ))

I=ML212b(tanθ+tanϕ)=3L2tanϕ=3L2btanθmusinθ=mUsinϕU=usinθsinϕmucosθJ=mUcosϕJ=mu(cosθsinθtanϕ)MV=JV=muM(cosθsinθtanϕ)ML2ω12=J(L2btanθ)ω=12mu(12btanθL)ML(cosθsinθtanϕ)mU22+MV22+12×ML2ω212=mu22sin2θsin2ϕ+mM(cosθsinθtanϕ)2+12m(12btanθL)2M(cosθsinθtanϕ)2=1μ[1+12(12btanθL)2](cosθsinθtanϕ)2=1sin2θsin2ϕwithμ=mM,ξ=bLμ[1+12(12ξtanθ)2](1+tan2θ)2(1tanθtanϕ)2+(tanθtanϕ)2=1withtanϕ=32ξtanθ==================θ1=ωt=12μ(12ξtanθ)utL(cosθsinθtanϕ)x1=L2y1=b+Vt=ξL+μutcosθsinθtanϕx2=btanθ+Utsinϕ=ξLtanθ+utsinθy2=bUtcosϕ=ξLutsinθtanϕ

Commented by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

Commented by mr W last updated on 03/Jan/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com