Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 215395 by mr W last updated on 05/Jan/25

Commented by mr W last updated on 06/Jan/25

a ball with mass m falls from the  hight h and hits the end of the rod  jutting out off the edge of a table.  the length of the uniform rod with   mass M is L=a+b (a>b).    1) find the maximum hight which  the ball will reach after collision.    2) find the maximum hight which  the rod will reach after collision.  (supposed that the table is removed  away after the collision so that the  rod can move freely).

aballwithmassmfallsfromthehighthandhitstheendoftherodjuttingoutofftheedgeofatable.thelengthoftheuniformrodwithmassMisL=a+b(a>b).1)findthemaximumhightwhichtheballwillreachaftercollision.2)findthemaximumhightwhichtherodwillreachaftercollision.(supposedthatthetableisremovedawayafterthecollisionsothattherodcanmovefreely).

Commented by ajfour last updated on 07/Jan/25

https://youtu.be/2O_ZoICD2Ss?si=r85hss2CP8u60lv6 Motion of charge in variable magnetic field

Commented by mr W last updated on 07/Jan/25

��

Answered by mr W last updated on 07/Jan/25

Commented by mr W last updated on 10/Jan/25

Commented by mr W last updated on 10/Jan/25

f=μN=μmg cos θ  v=ωr  I_p =((2mr^2 )/5)+mr^2 =((7mr^2 )/5)  mg(sin θ+μcos θ)s_1 =((mu^2 )/2)−(1/2)×((7mr^2 ω^2 )/5)  ⇒g(sin θ+μcos θ)s_1 =(u^2 /2)−((7r^2 ω^2 )/(10))  a=(sin θ+μ cos θ)g  α=((fr)/I)=((μmgr cos θ)/((2mr^2 )/5))=((5μg cos θ)/(2r))  ((u−v)/a)=((u−rω)/((sin θ+μ cos θ)g))=(ω/α)=((2rω)/(5μg cos θ))  ((u−rω)/(tan θ+μ))=((2rω)/(5μ))  ⇒rω=((5μu)/(7μ+2 tan θ))  g(sin θ+μcos θ)s_1 =(u^2 /2)−(7/(10))×(((5μu)/(7μ+2 tan θ)))^2   s_1 =(([1−((35μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))  mgs_2 sin θ=(1/2)×((7mr^2 ω^2 )/5)  s_2 =((7r^2 ω^2 )/(10g sin θ))=(7/(10g sin θ))×(((5μu)/(7μ+2 tan θ)))^2   ⇒s_2 =((35μ^2 u^2 )/(2g sin θ (7μ+2 tan θ)^2 ))  s=s_1 +s_2   ⇒s=(([1+((35μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))+((35μ^2 u^2 )/(2g sin θ (7μ+2 tan θ)^2 ))

f=μN=μmgcosθv=ωrIp=2mr25+mr2=7mr25mg(sinθ+μcosθ)s1=mu2212×7mr2ω25g(sinθ+μcosθ)s1=u227r2ω210a=(sinθ+μcosθ)gα=frI=μmgrcosθ2mr25=5μgcosθ2ruva=urω(sinθ+μcosθ)g=ωα=2rω5μgcosθurωtanθ+μ=2rω5μrω=5μu7μ+2tanθg(sinθ+μcosθ)s1=u22710×(5μu7μ+2tanθ)2s1=[135μ2(7μ+2tanθ)2]u22g(sinθ+μcosθ)mgs2sinθ=12×7mr2ω25s2=7r2ω210gsinθ=710gsinθ×(5μu7μ+2tanθ)2s2=35μ2u22gsinθ(7μ+2tanθ)2s=s1+s2s=[1+35μ2(7μ+2tanθ)2]u22g(sinθ+μcosθ)+35μ2u22gsinθ(7μ+2tanθ)2

Commented by mr W last updated on 08/Jan/25

u=(√(2gh))  mv=J_1 −mu  V=(((a−b)ω)/2)  MV=J_2 −J_1   ((M(a−b)ω)/2)=J_2 −m(v+u)  J_2 =((M(a−b)ω)/2)+m(v+u)  ((M(a+b)^2 ω)/(12))=J_1 b−(((a−b)J_2 )/2)  ((M(a+b)^2 ω)/(12))=m(v+u)b−(((a−b))/2)[((M(a−b)ω)/2)+m(v+u)]  (((a^2 +b^2 −ab)Mω)/3)=((m(3b−a)(v+u))/2)  ⇒v=((2M(a^2 +b^2 −ab)ω)/(3m(3b−a)))−u  ((m(u^2 −v^2 ))/2)=((MV^2 )/2)+(1/2)×((M(a+b)^2 ω^2 )/(12))  ((m(u^2 −v^2 ))/M)=(((a−b)^2 ω^2 )/4)+(((a+b)^2 ω^2 )/(12))  v^2 =u^2 −((M(a^2 +b^2 −ab)ω^2 )/(3m))  with μ=(m/M)  [((2(a^2 +b^2 −ab)ω)/(3μ(3b−a)))−u]^2 =u^2 −(((a^2 +b^2 −ab)ω^2 )/(3μ))  ⇒ω=((12μ(3b−a)u)/(4(a^2 +b^2 −ab)+3μ(3b−a)^2 ))  x_A =(((a+b)cos (ωt))/2)  y_A =Vt−((gt^2 )/2)+(((a+b)sin (ωt))/2)  y_A =(((a−b)ωt)/2)−((gt^2 )/2)+(((a+b)sin (ωt))/2)  v=[(8/(4+((3μ(3b−a)^2 )/(a^2 +b^2 −ab))))−1]u  v=0 when μ=((4(a^2 +b^2 −ab))/(3(3b−a)^2 ))  for v>0, i.e. when the ball rebounds  from the rod, it can reach a maximum  hight h_(max)  with  (h_(max) /h)=((v/u))^2 =[(8/(4+((3μ(3b−a)^2 )/(a^2 +b^2 −ab))))−1]^2   with (b/a)=λ  (h_(max) /h)=[(8/(4+((3μ(3λ−1)^2 )/(λ^2 −λ+1))))−1]^2

u=2ghmv=J1muV=(ab)ω2MV=J2J1M(ab)ω2=J2m(v+u)J2=M(ab)ω2+m(v+u)M(a+b)2ω12=J1b(ab)J22M(a+b)2ω12=m(v+u)b(ab)2[M(ab)ω2+m(v+u)](a2+b2ab)Mω3=m(3ba)(v+u)2v=2M(a2+b2ab)ω3m(3ba)um(u2v2)2=MV22+12×M(a+b)2ω212m(u2v2)M=(ab)2ω24+(a+b)2ω212v2=u2M(a2+b2ab)ω23mwithμ=mM[2(a2+b2ab)ω3μ(3ba)u]2=u2(a2+b2ab)ω23μω=12μ(3ba)u4(a2+b2ab)+3μ(3ba)2xA=(a+b)cos(ωt)2yA=Vtgt22+(a+b)sin(ωt)2yA=(ab)ωt2gt22+(a+b)sin(ωt)2v=[84+3μ(3ba)2a2+b2ab1]uv=0whenμ=4(a2+b2ab)3(3ba)2forv>0,i.e.whentheballreboundsfromtherod,itcanreachamaximumhighthmaxwithhmaxh=(vu)2=[84+3μ(3ba)2a2+b2ab1]2withba=λhmaxh=[84+3μ(3λ1)2λ2λ+11]2

Commented by ajfour last updated on 08/Jan/25

https://youtu.be/3wiUgK_riz8?si=pKPRqyotoxf-pwhm How far up the incline does solid ball reach?

Commented by mr W last updated on 08/Jan/25

��

Commented by mr W last updated on 09/Jan/25

Commented by mr W last updated on 09/Jan/25

Commented by mr W last updated on 09/Jan/25

Commented by mr W last updated on 09/Jan/25

Commented by ajfour last updated on 10/Jan/25

Thanks for this. by the way any error/blunder in my video lecture for this question sir, did you notice?

Commented by mr W last updated on 10/Jan/25

i got x=s_1 =(([1−((35μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))  while you got  x=(([1−((25μ^2 )/((7μ+2 tan θ)^2 ))]u^2 )/(2g(sin θ+μ cos θ)))

igotx=s1=[135μ2(7μ+2tanθ)2]u22g(sinθ+μcosθ)whileyougotx=[125μ2(7μ+2tanθ)2]u22g(sinθ+μcosθ)

Commented by ajfour last updated on 11/Jan/25

⇒g(sin θ+μcos θ)s_1 =(u^2 /2)−((7r^2 ω^2 )/(10))  Point of application of friction force moves  through s_1 −r𝛗  so  above eq. should be:  g(sin θ)s_1 +(μgcos θ)(s_1 −r𝛗)=(u^2 /2)−((7r^2 ω^2 )/(10))  i mean incline sees sphere surface   has rubbed past this length = s_1 −r𝛗  (v^2 /r^2 )=ω^2 =2(((μmgrcos θ)/((2/5)mr^2 )))𝛗  (v^2 /r^2 )=ω^2 =(((5μg)/r)cos θ)φ  μrg𝛗cos θ=(v^2 /5)=((ω^2 r^2 )/5)        hence  s_1 (sin θ+μcos θ)g−((2ω^2 r^2 )/(10))=(u^2 /2)−((7ω^2 r^2 )/(10))  s_1 =((u^2 −ω^2 r^2 )/(2g(sin θ+μcos θ)))  now  as  rω=((5μu)/(7μ+2 tan θ))  s_1 =(([1−((25μ^2 )/((7μ+2tan θ)^2 ))]u^2 )/(2g(sin θ+μcos θ)))   ★  Along this approach i would get this, sir!

g(sinθ+μcosθ)s1=u227r2ω210Pointofapplicationoffrictionforcemovesthroughs1rϕsoaboveeq.shouldbe:g(sinθ)s1+(μgcosθ)(s1rϕ)=u227r2ω210imeaninclineseesspheresurfacehasrubbedpastthislength=s1rϕv2r2=ω2=2(μmgrcosθ25mr2)ϕv2r2=ω2=(5μgrcosθ)ϕμrgϕcosθ=v25=ω2r25hences1(sinθ+μcosθ)g2ω2r210=u227ω2r210s1=u2ω2r22g(sinθ+μcosθ)nowasrω=5μu7μ+2tanθs1=[125μ2(7μ+2tanθ)2]u22g(sinθ+μcosθ)Alongthisapproachiwouldgetthis,sir!

Commented by mr W last updated on 11/Jan/25

you are right sir, thanks alot!

youarerightsir,thanksalot!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com