Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 215439 by hardmath last updated on 06/Jan/25

( 2  +  (√2) )^8  =  (√A)  +  (√B)  Find:   A−B = ?

(2+2)8=A+BFind:AB=?

Answered by Rasheed.Sindhi last updated on 07/Jan/25

If z is a binomial surd and n is  natural      (z^n )^(−) =(z^(−) )^n   Is this correct?          ( 2  +  (√2) )^8  =  (√A)  +  (√B) ...(i)  ⇒( 2  −  (√2) )^8  =  (√A)  −  (√B) ...(ii)  (i)×(ii):      ( 2  +  (√2) )^8 ( 2  −  (√2) )^8 =A−B      {(2+(√2) )(2+(√2) )}^8 =A−B       (4−2)^8 =A−B         A−B=256

Ifzisabinomialsurdandnisnatural(zn)=(z)nIsthiscorrect?(2+2)8=A+B...(i)(22)8=AB...(ii)(i)×(ii):(2+2)8(22)8=AB{(2+2)(2+2)}8=AB(42)8=ABAB=256

Commented by TonyCWX08 last updated on 07/Jan/25

Yeah.

Yeah.

Commented by mr W last updated on 07/Jan/25

right!   generally for a,b,c,n∈N:  (a+b(√c))^n   =Σ_(k=0) ^n C_k ^n a^(n−k) (b(√c))^k   =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) (b(√c))^(2r) +Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) (b(√c))^(2r+1)   =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) b^(2r) c^r +Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) b^(2r+1) c^r (√c)  =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) b^(2r) c^r +(Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) b^(2r+1) c^r )(√c)  =A+B(√c)  similarly  (a−b(√c))^n   =Σ_(r=0) ^(⌊(n/2)⌋) C_(2r) ^n a^(n−2r) b^(2r) c^r −(Σ_(r=0) ^(⌊(n/2)⌋−1) C_(2r+1) ^n a^(n−2r+1) b^(2r+1) c^r )(√c)  =A−B(√c)

right!generallyfora,b,c,nN:(a+bc)n=nk=0Cknank(bc)k=n2r=0C2rnan2r(bc)2r+n21r=0C2r+1nan2r+1(bc)2r+1=n2r=0C2rnan2rb2rcr+n21r=0C2r+1nan2r+1b2r+1crc=n2r=0C2rnan2rb2rcr+(n21r=0C2r+1nan2r+1b2r+1cr)c=A+Bcsimilarly(abc)n=n2r=0C2rnan2rb2rcr(n21r=0C2r+1nan2r+1b2r+1cr)c=ABc

Commented by Rasheed.Sindhi last updated on 07/Jan/25

Thanks  sirs!

Thankssirs!

Answered by TonyCWX08 last updated on 07/Jan/25

(2+(√2))^2 =4+4(√2)+2=6+4(√2)  (6+4(√2))^2 =36+48(√2)+32=68+48(√2)  (68+48(√2))^2 =4624+6528(√2)+4608=9232+6528(√2)  =(√(9232^2 ))+(√(2(6528)^2 ))  A−B=9232^2 −2(6528)^2 =256

(2+2)2=4+42+2=6+42(6+42)2=36+482+32=68+482(68+482)2=4624+65282+4608=9232+65282=92322+2(6528)2AB=923222(6528)2=256

Commented by hardmath last updated on 07/Jan/25

(2 + (√2))^8  ...

(2+2)8...

Commented by TonyCWX08 last updated on 07/Jan/25

(2+(√2))^8 =(((2+(√2))^2 )^2 )^2

(2+2)8=(((2+2)2)2)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com