All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 215458 by depressiveshrek last updated on 07/Jan/25
Evaluatelimn→∞n2∫01xn+1sin(πx)dx
Answered by MathematicalUser2357 last updated on 11/Jan/25
limn→∞n2∫01xn+1sinπxdx=limn→∞∫01n2xn+1sinπxdx=limn→∞[n2∫xn+1sinπxdx]01DIxn+1=(n+1)!(n+1)!xn+1sinπx(n+1)xn=(n+1)!n!xn−1πcosπx(n+1)nxn−1=(n+1)!(n−1)!xn−1−1π2sinπx(n+1)!(n−2)!xn−21π3cosπx...1π4sinπx=limn→∞[∑∞k=0n2(−1)k+1{(n+1)!π2k+1(n+1−2k)!xn+1−2kcosπx−(n+1)!π2k+2(n−2k)!xn−2ksinπx}]01=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com