Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215458 by depressiveshrek last updated on 07/Jan/25

Evaluate lim_(n→∞)  n^2  ∫_0 ^1 x^(n+1) sin(πx)dx

Evaluatelimnn201xn+1sin(πx)dx

Answered by MathematicalUser2357 last updated on 11/Jan/25

lim_(n→∞) n^2 ∫_0 ^1 x^(n+1) sin πxdx=lim_(n→∞) ∫_0 ^1 n^2 x^(n+1) sin πxdx=lim_(n→∞) [n^2 ∫x^(n+1) sin πxdx]_0 ^1    determinant ((D,I),((x^(n+1) =(((n+1)!)/((n+1)!))x^(n+1) ),(sin πx)),(((n+1)x^n =(((n+1)!)/(n!))x^n ),(−(1/π)cos πx)),(((n+1)nx^(n−1) =(((n+1)!)/((n−1)!))x^(n−1) ),(−(1/π^2 )sin πx)),(((((n+1)!)/((n−2)!))x^(n−2) ),((1/π^3 )cos πx)),((...),((1/π^4 )sin πx)))  =lim_(n→∞) [Σ_(k=0) ^∞ n^2 (−1)^(k+1) {(((n+1)!)/(π^(2k+1) (n+1−2k)!))x^(n+1−2k) cos πx−(((n+1)!)/(π^(2k+2) (n−2k)!))x^(n−2k) sin πx}]_0 ^1   =0

limnn201xn+1sinπxdx=limn01n2xn+1sinπxdx=limn[n2xn+1sinπxdx]01DIxn+1=(n+1)!(n+1)!xn+1sinπx(n+1)xn=(n+1)!n!xn1πcosπx(n+1)nxn1=(n+1)!(n1)!xn11π2sinπx(n+1)!(n2)!xn21π3cosπx...1π4sinπx=limn[k=0n2(1)k+1{(n+1)!π2k+1(n+12k)!xn+12kcosπx(n+1)!π2k+2(n2k)!xn2ksinπx}]01=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com