All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 215498 by alephnull last updated on 08/Jan/25
∫(e−ωu+cos(u)−sin(ωu)eu)du
Answered by MathematicalUser2357 last updated on 10/Jan/25
−e−uωω+e−usinuω(ω−i)(ω+i)+e−uωcosuω(ω−i)(ω+i)+sinu+Ce−u(sinuωω2+1+ωcosuωω2+1)−e−uωω+sinu+Ce−usinuωω2+1+e−uωcosuωω2+1−e−uωω+sinu+C(ω2+1)(ωsinu−e−uω)+e−uω2cosuω+e−uωsinuωω(ω2+1)+CThelasttwosimilarexpressionsaretoolong+C
Answered by mr W last updated on 10/Jan/25
I=∫sin(ωu)euduI=−1ω∫1eud(cos(ωu))I=−1ω[cos(ωu)eu+∫cos(ωu)dueu]I=−1ω[cos(ωu)eu+1ω∫d(sin(ωu)eu]I=−1ω[cos(ωu)eu+1ω×sin(ωu)eu+1ω∫sin(ωu)eudu]I=−1ω2[sin(ωu)+ωcos(ωu)eu+I](ω2+1)I=−sin(ωu)+ωcos(ωu)eu⇒I=∫sin(ωu)eudu=−sin(ωu)+ωcos(ωu)(ω2+1)eu∫(e−ωu+cos(u)−sin(ωu)eu)du=∫e−ωudu+∫cos(u)du−∫sin(ωu)eudu=−e−ωuω+sinu−∫sin(ωu)eudu=−e−ωuω+sinu+sin(ωu)+ωcos(ωu)(ω2+1)eu+C
Commented by alephnull last updated on 10/Jan/25
thank
Terms of Service
Privacy Policy
Contact: info@tinkutara.com