Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215498 by alephnull last updated on 08/Jan/25

∫(e^(−ωu) +cos(u)−((sin(ωu))/e^u ))du

(eωu+cos(u)sin(ωu)eu)du

Answered by MathematicalUser2357 last updated on 10/Jan/25

−(e^(−uω) /ω)+((e^(−u) sin uω)/((ω−i)(ω+i)))+((e^(−u) ωcos uω)/((ω−i)(ω+i)))+sin u+C  e^(−u) (((sin uω)/(ω^2 +1))+((ωcos uω)/(ω^2 +1)))−(e^(−uω) /ω)+sin u+C  ((e^(−u) sin uω)/(ω^2 +1))+((e^(−u) ωcos uω)/(ω^2 +1))−(e^(−uω) /ω)+sin u+C  (((ω^2 +1)(ωsin u−e^(−uω) )+e^(−u) ω^2 cos uω+e^(−u) ωsin uω)/(ω(ω^2 +1)))+C  The last two similar expressions are too long+C

euωω+eusinuω(ωi)(ω+i)+euωcosuω(ωi)(ω+i)+sinu+Ceu(sinuωω2+1+ωcosuωω2+1)euωω+sinu+Ceusinuωω2+1+euωcosuωω2+1euωω+sinu+C(ω2+1)(ωsinueuω)+euω2cosuω+euωsinuωω(ω2+1)+CThelasttwosimilarexpressionsaretoolong+C

Answered by mr W last updated on 10/Jan/25

I=∫((sin (ωu))/e^u )du  I=−(1/ω)∫(1/e^u )d(cos (ωu))  I=−(1/ω)[((cos (ωu))/e^u )+∫((cos (ωu)du)/e^u )]  I=−(1/ω)[((cos (ωu))/e^u )+(1/ω)∫((d(sin (ωu))/e^u )]  I=−(1/ω)[((cos (ωu))/e^u )+(1/ω)×((sin (ωu))/e^u )+(1/ω)∫((sin (ωu))/e^u )du]  I=−(1/ω^2 )[((sin (ωu)+ω cos (ωu))/e^u )+I]  (ω^2 +1)I=−((sin (ωu)+ω cos (ωu))/e^u )  ⇒I=∫((sin (ωu))/e^u )du=−((sin (ωu)+ω cos (ωu))/((ω^2 +1)e^u ))    ∫(e^(−ωu) +cos (u)−((sin (ωu))/e^u ))du  =∫e^(−ωu) du+∫cos (u)du−∫((sin (ωu))/e^u )du  =−(e^(−ωu) /ω)+sin u−∫((sin (ωu))/e^u )du  =−(e^(−ωu) /ω)+sin u+((sin (ωu)+ω cos (ωu))/((ω^2 +1)e^u ))+C

I=sin(ωu)euduI=1ω1eud(cos(ωu))I=1ω[cos(ωu)eu+cos(ωu)dueu]I=1ω[cos(ωu)eu+1ωd(sin(ωu)eu]I=1ω[cos(ωu)eu+1ω×sin(ωu)eu+1ωsin(ωu)eudu]I=1ω2[sin(ωu)+ωcos(ωu)eu+I](ω2+1)I=sin(ωu)+ωcos(ωu)euI=sin(ωu)eudu=sin(ωu)+ωcos(ωu)(ω2+1)eu(eωu+cos(u)sin(ωu)eu)du=eωudu+cos(u)dusin(ωu)eudu=eωuω+sinusin(ωu)eudu=eωuω+sinu+sin(ωu)+ωcos(ωu)(ω2+1)eu+C

Commented by alephnull last updated on 10/Jan/25

thank

thank

Terms of Service

Privacy Policy

Contact: info@tinkutara.com