All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 215520 by CrispyXYZ last updated on 09/Jan/25
Provethat{x=7cost−22−costy=43sint2−costisacircle.
Answered by alephnull last updated on 09/Jan/25
=x(2−cos(t))=7cos(t)−2,y(2−cos(t))=43sin(t)Rearrange2x−xcos(t)=7cos(t)−22y−ycos(t)=43sin(t)↓xcos(t)=(7cos(t)−2)−2xycos(t)=43sin(t)−2yrecallpythagorasindentitycos2t+sin2t=1cos(t)=2x+2x−7,sin(t)=(2−x)y43Substitute(2x+2x−7)2+((2−x)y43)2=1simplify(2x+2)2(x−7)2+(2−x)2y248=1=48(2x+2)2+(2−x)2y2(x−7)2=48(x−7)2answerresemblescirclething(x−h)2+(y−k)2=rsoitis
Answered by mr W last updated on 10/Jan/25
x=7cost−22−cost=122−cost−7⇒2−cost=12x+7⇒cost=2−12x+7=2(x+1)x+7⇒sint=y(2−cost)43=3yx+7sin2t+cos2t=1⇒(3yx+7)2+4(x+1x+7)2=1⇒3y2+4(x+1)2=(x+7)2⇒y2+(x−1)2=42thisisacirclewithradius4andcenterat(1,0)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com