Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 215520 by CrispyXYZ last updated on 09/Jan/25

Prove that  { ((x = ((7 cos t − 2)/(2 − cos t)))),((y = ((4(√3) sin t)/(2 − cos t)))) :} is a circle.

Provethat{x=7cost22costy=43sint2costisacircle.

Answered by alephnull last updated on 09/Jan/25

= x(2−cos(t))=7cos(t)−2, y(2−cos (t))=4(√3)sin (t)  Rearrange  2x−xcos (t)=7cos (t)−2  2y−ycos (t)=4(√3)sin (t)  ↓  xcos (t)=(7cos (t)−2)−2x  ycos (t)=4(√3)sin (t)−2y    recall pythagoras indentity  cos^2 t+sin^2 t=1    cos(t)=((2x+2)/(x−7)), sin(t)=(((2−x)y)/(4(√3)))  Substitute  (((2x+2)/(x−7)))^2 +((((2−x)y)/(4(√3))))^2 =1  simplify  (((2x+2)^2 )/((x−7)^2 ))+(((2−x)^2 y^2 )/(48))=1  =48(2x+2)^2 +(2−x)^2 y^2 (x−7)^2 =48(x−7)^2     answer resembles circle thing  (x−h)^2 +(y−k)^2 =r    so it is

=x(2cos(t))=7cos(t)2,y(2cos(t))=43sin(t)Rearrange2xxcos(t)=7cos(t)22yycos(t)=43sin(t)xcos(t)=(7cos(t)2)2xycos(t)=43sin(t)2yrecallpythagorasindentitycos2t+sin2t=1cos(t)=2x+2x7,sin(t)=(2x)y43Substitute(2x+2x7)2+((2x)y43)2=1simplify(2x+2)2(x7)2+(2x)2y248=1=48(2x+2)2+(2x)2y2(x7)2=48(x7)2answerresemblescirclething(xh)2+(yk)2=rsoitis

Answered by mr W last updated on 10/Jan/25

x=((7 cos t−2)/(2−cos t))=((12)/(2−cos t))−7  ⇒2−cos t=((12)/(x+7))  ⇒cos t=2−((12)/(x+7))=((2(x+1))/(x+7))  ⇒sin t=((y(2−cos t))/(4(√3)))=(((√3)y)/(x+7))  sin^2  t+cos^2  t=1  ⇒((((√3)y)/(x+7)))^2 +4(((x+1)/(x+7)))^2 =1  ⇒3y^2 +4(x+1)^2 =(x+7)^2   ⇒y^2 +(x−1)^2 =4^2   this is a circle with radius 4 and  center at (1, 0)

x=7cost22cost=122cost72cost=12x+7cost=212x+7=2(x+1)x+7sint=y(2cost)43=3yx+7sin2t+cos2t=1(3yx+7)2+4(x+1x+7)2=13y2+4(x+1)2=(x+7)2y2+(x1)2=42thisisacirclewithradius4andcenterat(1,0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com