Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 215535 by MrGaster last updated on 10/Jan/25

∫_(Σ_(1≤i≤n) x_i ^2 ≤R^2 ) Σ_(1≤i≤n) x_i (∂f/∂x_i )Π_(1≤i≤n) dx_i =?

1inxi2R21inxifxi1indxi=?

Answered by MrGaster last updated on 10/Jan/25

∫_0 ^R rdr∫_(Σ_(1≤i≤n) x_i ^2 −r^(2 ) ) Σ_(1≤i≤n) (x_i /r) (∂f/∂x_i )dS  =∫_0 ^R r dr ∫_(Σ_(1≤i≤n) x_i ^2 =r^2 ) ⟨n,▽f⟩dS  =∫_0 ^R r dr∫_(Σ_(1≤i≤n) x_i ^2 ≤r^2 ) ▽^2 fΠ_(1≤i≤n) dx_i =∫_0 ^R rdr∫_(Σ_(1≤i≤n) x_i ^2 ≤r^2 ) g(Σ_(1≤i≤n) x_i ^2 )Π_(1≤i≤n) dx_i   LetΣ_(1≤i≤n) x_i ^2 =u^2 ⇒Π_(1≤i≤n) dx_i =d∫_(Σ_(1≤i≤n) x_i ^2 =u^2 ) Π_(1≤i≤n) dx_i =((2π^(n/2) u^(n−1) )/(Γ((n/2))))du  ∫_(Σ_(1≤i≤n) x_i ^2 ≤R^2 ) Σ_(1≤i≤n) x_i (∂f/∂x_i )Π_(1≤i≤n) dx_i =((2π^(n/2) )/(Γ((n/2))))∫_0 ^R rdr∫_0 ^r g(u^2 )u^(n−1) du

0Rrdr1inxi2r21inxirfxidS=0Rrdr1inxi2=r2n,fdS=0Rrdr1inxi2r22f1indxi=0Rrdr1inxi2r2g(1inxi2)1indxiLet1inxi2=u21indxi=d1inxi2=u21indxi=2πn2un1Γ(n2)du1inxi2R21inxifxi1indxi=2πn2Γ(n2)0Rrdr0rg(u2)un1du

Terms of Service

Privacy Policy

Contact: info@tinkutara.com