Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 215640 by BaliramKumar last updated on 12/Jan/25

If  2025^(sin^2 x)  − 2025^(cos^2 x)  = (√(2025))  then 2025^(cos2x)  + (1/(2025^(cos2x) )) = ?

If2025sin2x2025cos2x=2025then2025cos2x+12025cos2x=?

Answered by Frix last updated on 13/Jan/25

t=2025^((cos 2x)/2)  ⇔ x=((cos^(−1)  ((2ln t)/(ln 2025)))/2)  (1/t)−t=1 ⇒ t=−(1/2)+((√5)/2)  (1/t^2 )+t^2 =3

t=2025cos2x2x=cos12lntln202521tt=1t=12+521t2+t2=3

Answered by som(math1967) last updated on 13/Jan/25

 2025^((1−cox2x)/2) −2025^((1+cox2x)/2) =(√(2025))  ⇒(√(2025))[2025^(−((cos2x)/2)) −2025^((cos2x)/2) ]=(√(2025))  ⇒[2025^(−((cos2x)/2)) −2025^((cos2x)/2) ]^2 =1^2   ⇒2025^(−cos2x) +2025^(cox2x) −2.(2025)^0  =1  ∴2025^(cos2x) +(1/(2025^(cos2x) ))=3

20251cox2x220251+cox2x2=20252025[2025cos2x22025cos2x2]=2025[2025cos2x22025cos2x2]2=122025cos2x+2025cox2x2.(2025)0=12025cos2x+12025cos2x=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com