Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 215650 by mr W last updated on 13/Jan/25

Commented by mr W last updated on 14/Jan/25

a rotating disc with angular velocity  𝛚 is put on an incline with rough   surface as shown.   find the maximum distance the   disc can move upwards along the   incline.  the friction coefficient is 𝛍.    (original question see youtube  channel from ajfour sir)

arotatingdiscwithangularvelocityωisputonaninclinewithroughsurfaceasshown.findthemaximumdistancethedisccanmoveupwardsalongtheincline.thefrictioncoefficientisμ.(originalquestionseeyoutubechannelfromajfoursir)

Commented by mr W last updated on 15/Jan/25

https://youtu.be/3wiUgK_riz8?si=HlRNIT6W5V9kkg1q

Answered by Wuji last updated on 13/Jan/25

E_(rot) =(1/2)Iω^2   for solid disc, the  momment of  inertia I is  I=(1/2)mr^2   gravutational potential energy  at height h  E_(grav) =mgh  Workdone aginst friction  W_f =μmgcosθS  from Energy conservation  E_(rot) =E_(grav) +W_f   (1/4)mr^2 ω^2 =mgh+μmgcosθS  S=(((1/4)mr^2 ω^2 −mgh)/(μmgcosθ))  S=((mr^2 ω^2 −4mgh)/(4μmgcosθ))  S=((m(r^2 ω^2 −4gh))/(m(4μgcosθ)))  S=((r^2 ω^2 −4gh)/(4μgcosθ))

Erot=12Iω2forsoliddisc,themommentofinertiaIisI=12mr2gravutationalpotentialenergyatheighthEgrav=mghWorkdoneaginstfrictionWf=μmgcosθSfromEnergyconservationErot=Egrav+Wf14mr2ω2=mgh+μmgcosθSS=14mr2ω2mghμmgcosθS=mr2ω24mgh4μmgcosθS=m(r2ω24gh)m(4μgcosθ)S=r2ω24gh4μgcosθ

Commented by mr W last updated on 13/Jan/25

not correct! only friction by slipping  causes loss of energy. but not the  whole distance s is slipping. only  a part of it is slipping, the other  part is rolling. the rolling part  doesn′t cause energy loss.

notcorrect!onlyfrictionbyslippingcauseslossofenergy.butnotthewholedistancesisslipping.onlyapartofitisslipping,theotherpartisrolling.therollingpartdoesntcauseenergyloss.

Answered by mr W last updated on 14/Jan/25

Commented by mr W last updated on 16/Jan/25

case 1: the friction coefficient   is large: 𝛍>tan 𝛉    in this case the rotating disc will   move upwards along the incline   after it is released.  for solid disc: I=((mr^2 )/2)  t=0 → t_1 : rolling & slipping  friction force f=μmg cos θ  (↗)  a=((μmg cos θ−mg sin θ)/m)=g(μ cos θ−sin θ)  α=((fr)/I)=((rμmg cos θ)/((mr^2 )/2))=((2μg cos θ)/r)  v_1 =ω_1 r  t_1 =(v_1 /a)=((ω−ω_1 )/α)  ((ω_1 r)/(g(μ cos θ−sin θ)))=(((ω−ω_1 )r)/(2μg cos θ))  (ω_1 /(μ−tan θ))=((ω−ω_1 )/(2μ))  ⇒ω_1 =(((μ−tan θ)ω)/(3μ−tan θ))  s_1 =(v_1 ^2 /(2a))=(((μ−tan θ)^2 ω^2 r^2 )/(2g(μcos θ−sin θ)(3μ−tan θ)^2 ))  ⇒s_1 =(((μ−tan θ)ω^2 r^2 )/(2g(3μ−tan θ)^2 cos θ))  check:  rotation of disc ϕ_1   ϕ_1 =((ω^2 −ω_1 ^2 )/(2α))=(r/(4μg cos θ))[1−(((μ−tan θ)^2 )/((3μ−tan θ)^2 ))]ω^2   ϕ_1 r=(((2μ−tan θ)ω^2 r^2 )/(g(3μ−tan θ)^2  cos θ)) > s_1   ⇒ slipping indeed!  ϕ_1 =(((2μ−tan θ)ω^2 r)/(g(3μ−tan θ)^2  cos θ))    t=t_1  → t_2 : rolling only  K.E. ⇒P.E.  (1/2)(((mr^2 )/2)+mr^2 )ω_1 ^2 =mg s_2  sin θ  s_2 =((3mr^2 )/(4mg sin θ))×(((μ−tan θ)^2 ω^2 )/((3μ−tan θ)^2 ))  ⇒s_2 =((3(μ−tan θ)^2 ω^2 r^2 )/(4g(3μ−tan θ)^2  sin θ))  ϕ_2 =(s_2 /r)=((3(μ−tan θ)^2 ω^2 r)/(4g (3μ−tan θ)^2  sin θ))  ⇒ϕ_2 =((3(μ−tan θ)^2 ω^2 r)/(4g(3μ−tan θ)^2  sin θ))    total distance s=s_1 +s_2   s=(((μ−tan θ)ω^2 r^2 )/(2g(3μ−tan θ)^2 cos θ))+((3(μ−tan θ)^2 ω^2 r^2 )/(4g (3μ−tan θ)^2  sin θ))  ⇒s=(((μ−tan θ)ω^2 r^2 )/(4g(3μ−tan θ) sin θ))  or  s sin θ=h=(((μ−tan θ)ω^2 r^2 )/(4g(3μ−tan θ)))    mgh′=(1/2)×((mω^2 r^2 )/2)  h′=((ω^2 r^2 )/(4g))  we see h=(((μ−tan θ)h′)/(3μ−tan θ))<h′    ϕ=ϕ_1 +ϕ_2 =(((2μ−tan θ)ω^2 r)/(g cos θ (3μ−tan θ)^2 ))+((3(μ−tan θ)^2 ω^2 r)/(4g(3μ−tan θ)^2  sin θ))  ⇒ϕ=(((μ+tan θ)ω^2 r)/(4g(3μ−tan θ) sin θ))

case1:thefrictioncoefficientislarge:μ>tanθinthiscasetherotatingdiscwillmoveupwardsalongtheinclineafteritisreleased.forsoliddisc:I=mr22t=0t1:rolling&slippingfrictionforcef=μmgcosθ()a=μmgcosθmgsinθm=g(μcosθsinθ)α=frI=rμmgcosθmr22=2μgcosθrv1=ω1rt1=v1a=ωω1αω1rg(μcosθsinθ)=(ωω1)r2μgcosθω1μtanθ=ωω12μω1=(μtanθ)ω3μtanθs1=v122a=(μtanθ)2ω2r22g(μcosθsinθ)(3μtanθ)2s1=(μtanθ)ω2r22g(3μtanθ)2cosθcheck:rotationofdiscφ1φ1=ω2ω122α=r4μgcosθ[1(μtanθ)2(3μtanθ)2]ω2φ1r=(2μtanθ)ω2r2g(3μtanθ)2cosθ>s1slippingindeed!φ1=(2μtanθ)ω2rg(3μtanθ)2cosθt=t1t2:rollingonlyK.E.P.E.12(mr22+mr2)ω12=mgs2sinθs2=3mr24mgsinθ×(μtanθ)2ω2(3μtanθ)2s2=3(μtanθ)2ω2r24g(3μtanθ)2sinθφ2=s2r=3(μtanθ)2ω2r4g(3μtanθ)2sinθφ2=3(μtanθ)2ω2r4g(3μtanθ)2sinθtotaldistances=s1+s2s=(μtanθ)ω2r22g(3μtanθ)2cosθ+3(μtanθ)2ω2r24g(3μtanθ)2sinθs=(μtanθ)ω2r24g(3μtanθ)sinθorssinθ=h=(μtanθ)ω2r24g(3μtanθ)mgh=12×mω2r22h=ω2r24gweseeh=(μtanθ)h3μtanθ<hφ=φ1+φ2=(2μtanθ)ω2rgcosθ(3μtanθ)2+3(μtanθ)2ω2r4g(3μtanθ)2sinθφ=(μ+tanθ)ω2r4g(3μtanθ)sinθ

Commented by mr W last updated on 14/Jan/25

Commented by mr W last updated on 14/Jan/25

case 2: the friction coefficient  is small: 𝛍<tan 𝛉  in this case the rotating can not  move upwards along the incline.  it will move downwards. after same  time the disc will be only rolling.  f=μmg cos θ  (↗)  a=((mg sin θ−μmg cos θ)/m)=g(sin θ−μ cos θ)  α=((fr)/I)=((μmgr cos θ)/((mr^2 )/2))=((2μg cos θ)/r)  v_1 =ω_1 r  t_1 =(v_1 /a)=((ω_1 +ω)/α)  ((ω_1 r)/(g(sin θ−μ cos θ)))=(((ω_1 +ω)r)/(2μg cos θ))  (ω_1 /(tan θ−μ))=((ω_1 +ω)/(2μ))  (3μ−tan θ)ω_1 =(tan θ−μ)ω  ⇒ω_1 =(((tan θ−μ)ω)/(3μ−tan θ))  ((tan θ)/3)<μ<tan θ  s=(v_1 ^2 /(2a))=(((tan θ−μ)^2 ω^2 r^2 )/(2g(sin θ−μ cos θ)(3μ−tan θ)^2 ))  ⇒s=(((tan θ−μ)ω^2 r^2 )/(2g(3μ−tan θ)^2 cos θ))    if μ≤((tan θ)/3), the disc can never roll  only on the incline, but always roll  and slip.

case2:thefrictioncoefficientissmall:μ<tanθinthiscasetherotatingcannotmoveupwardsalongtheincline.itwillmovedownwards.aftersametimethediscwillbeonlyrolling.f=μmgcosθ()a=mgsinθμmgcosθm=g(sinθμcosθ)α=frI=μmgrcosθmr22=2μgcosθrv1=ω1rt1=v1a=ω1+ωαω1rg(sinθμcosθ)=(ω1+ω)r2μgcosθω1tanθμ=ω1+ω2μ(3μtanθ)ω1=(tanθμ)ωω1=(tanθμ)ω3μtanθtanθ3<μ<tanθs=v122a=(tanθμ)2ω2r22g(sinθμcosθ)(3μtanθ)2s=(tanθμ)ω2r22g(3μtanθ)2cosθifμtanθ3,thedisccanneverrollonlyontheincline,butalwaysrollandslip.

Commented by ajfour last updated on 15/Jan/25

https://youtu.be/-RRr7_nNNqI?si=mdeobU80KLO5c5m- A special case of a more general geometry question that mrW sir, MJS sir and myself had solved way back several yers.

Commented by mr W last updated on 15/Jan/25

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com