All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 215748 by MrGaster last updated on 17/Jan/25
limn→∞[∏n+1k=1Γ(1k)]1n+1−[∏nk=1Γ(1k)]1n
Answered by MrGaster last updated on 02/Feb/25
=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−(∏nk=1Γ(1k)∏n+1k=1Γ(1k))1n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−(Γ(1n+1)∏n+1k=1Γ(1k))1n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−(Γ(1n+1)∏n+1k=1Γ(1k))1n][∏n+1k=1Γ(1k)]1n+1[1−(Γ(1n+1)Γ(1+1n+1))1n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−(11n+1)1n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−(n+1)1n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−eln(n+1)n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[1−(1+ln(n+1)n+O(ln2(n+1)n))]=limn→∞[∏n+1k=1Γ(1k)]1n+1[−ln(n+1)n+O(ln2(n+1)n2)]=limn→∞[∏n+1k=1Γ(1k)]1n+1[−ln(n−1)n]=limn→∞[∏n+1k=1Γ(1k)]1n+1[−1nln(n+1)]=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com