Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 215748 by MrGaster last updated on 17/Jan/25

lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) −[Π_(k=1) ^n Γ((1/k))]^(1/n)

limn[n+1k=1Γ(1k)]1n+1[nk=1Γ(1k)]1n

Answered by MrGaster last updated on 02/Feb/25

=lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−(((Π_(k=1) ^n Γ((1/k)))/(Π_(k=1) ^(n+1) Γ((1/k)))))^(1/n) ]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−(((Γ((1/(n+1))))/(Π_(k=1) ^(n+1) Γ((1/k)))))^(1/n) ]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−(((Γ((1/(n+1))))/(Π_(k=1) ^(n+1) Γ((1/k)))))^(1/n) ]  [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−(((Γ((1/(n+1))))/(Γ(1+(1/(n+1))))))^(1/n) ]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−((1/(1/(n+1))))^(1/n) ]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−(n+1)^(1/n) ]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−e^((ln(n+1))/n) ]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [1−(1+((ln(n+1))/n)+O(((ln^2 (n+1))/n)))]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [−((ln(n+1))/n)+O(((ln^2 (n+1))/n^2 ))]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [−((ln(n−1))/n)]  =lim_(n→∞) [Π_(k=1) ^(n+1) Γ((1/k))]^(1/(n+1)) [−(1/n)ln(n+1)]  =0

=limn[n+1k=1Γ(1k)]1n+1[1(nk=1Γ(1k)n+1k=1Γ(1k))1n]=limn[n+1k=1Γ(1k)]1n+1[1(Γ(1n+1)n+1k=1Γ(1k))1n]=limn[n+1k=1Γ(1k)]1n+1[1(Γ(1n+1)n+1k=1Γ(1k))1n][n+1k=1Γ(1k)]1n+1[1(Γ(1n+1)Γ(1+1n+1))1n]=limn[n+1k=1Γ(1k)]1n+1[1(11n+1)1n]=limn[n+1k=1Γ(1k)]1n+1[1(n+1)1n]=limn[n+1k=1Γ(1k)]1n+1[1eln(n+1)n]=limn[n+1k=1Γ(1k)]1n+1[1(1+ln(n+1)n+O(ln2(n+1)n))]=limn[n+1k=1Γ(1k)]1n+1[ln(n+1)n+O(ln2(n+1)n2)]=limn[n+1k=1Γ(1k)]1n+1[ln(n1)n]=limn[n+1k=1Γ(1k)]1n+1[1nln(n+1)]=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com