Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 215760 by MATHEMATICSAM last updated on 17/Jan/25

Let g(x) = 3f((x/3)) + f(3 − x) and   f ′′(x) > 0 for all x ∈ (0, 3). If g is   decreasing in (0, α) and increasing in  (α, 3) then find 8α.

Letg(x)=3f(x3)+f(3x)andf(x)>0forallx(0,3).Ifgisdecreasingin(0,α)andincreasingin(α,3)thenfind8α.

Answered by universe last updated on 18/Jan/25

f′′(x)>0=>f′ is strictly increasing   g′(x)=f′(x/3)−f′(3−x)  g′(x)=0  (x/3) = 3−x  x+x/3= 3   x = (9/4) is a critical point  g(x) is decreing (0,9/4)   α =9/4  8α = 18

f(x)>0=>fisstrictlyincreasingg(x)=f(x/3)f(3x)g(x)=0x3=3xx+x/3=3x=94isacriticalpointg(x)isdecreing(0,9/4)α=9/48α=18

Commented by MATHEMATICSAM last updated on 17/Jan/25

the answer is given 18

theanswerisgiven18

Terms of Service

Privacy Policy

Contact: info@tinkutara.com