Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 215811 by MATHEMATICSAM last updated on 18/Jan/25

If α, β, γ, δ are the roots of   x^4  + x^3  + x^2  + x + 1 = 0 then find  α^(2021)  + β^(2021)  + γ^(2021)  + δ^(2021)  .

Ifα,β,γ,δaretherootsofx4+x3+x2+x+1=0thenfindα2021+β2021+γ2021+δ2021.

Answered by A5T last updated on 18/Jan/25

(x−1)(x^4 +x^3 +x^2 +x+1)=x^5 −1=0  ⇒x^5 =1⇒α^5 =β^5 =γ^5 =δ^5 =1  ⇒α^(2020) =β^(2020) =γ^(2020) =δ^(2020) =1  ⇒α^(2021) +β^(2021) +γ^(2021) +δ^(2021) =α+β+γ+δ=−1

(x1)(x4+x3+x2+x+1)=x51=0x5=1α5=β5=γ5=δ5=1α2020=β2020=γ2020=δ2020=1α2021+β2021+γ2021+δ2021=α+β+γ+δ=1

Answered by AntonCWX last updated on 18/Jan/25

Terms of Service

Privacy Policy

Contact: info@tinkutara.com