Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 216060 by mr W last updated on 26/Jan/25

Commented by mr W last updated on 26/Jan/25

find radius of inscribed circle r=?

findradiusofinscribedcircler=?

Answered by mr W last updated on 26/Jan/25

say μ=(b/a), λ=(r/a)  say P(a cos θ, b sin θ)  tan φ=−(dx/dy)=((a sin θ)/(b cos θ))=((tan θ)/μ)=(m/μ)  b sin θ=r sin φ  ⇒μ sin θ=((λm)/( (√(m^2 +μ^2 ))))   ...(i)  a cos θ=r+r cos φ  ⇒cos θ=λ(1+(μ/( (√(m^2 +μ^2 )))))   ...(ii)  (i)/(ii):  μ tan θ=(m/(μ+(√(m^2 +μ^2 ))))  μ=(1/(μ+(√(m^2 +μ^2 ))))  (√(m^2 +μ^2 ))=(1/μ)−μ  ⇒m^2 =(1/μ^2 )−2 ≥0 ⇒μ≤(1/( (√2))) ⇒a≥(√2)b  from (i):  μ sin θ=((λm)/( (√(m^2 +μ^2 ))))  ((μm)/( (√(1+m^2 ))))=((λm)/( (√(m^2 +μ^2 ))))  ⇒λ=((μ (√(m^2 +μ^2 )))/( (√(1+m^2 ))))=((μ((1/μ)−μ))/( (√((1/μ^2 )−1))))=μ(√(1−μ^2 ))  i.e. r=b(√(1−((b/a))^2 ))

sayμ=ba,λ=rasayP(acosθ,bsinθ)tanϕ=dxdy=asinθbcosθ=tanθμ=mμbsinθ=rsinϕμsinθ=λmm2+μ2...(i)acosθ=r+rcosϕcosθ=λ(1+μm2+μ2)...(ii)(i)/(ii):μtanθ=mμ+m2+μ2μ=1μ+m2+μ2m2+μ2=1μμm2=1μ220μ12a2bfrom(i):μsinθ=λmm2+μ2μm1+m2=λmm2+μ2λ=μm2+μ21+m2=μ(1μμ)1μ21=μ1μ2i.e.r=b1(ba)2

Commented by mr W last updated on 26/Jan/25

Commented by mr W last updated on 26/Jan/25

Commented by ajfour last updated on 27/Jan/25

If a≤(√2)b   then   such  r=(a/2)  And if  a≥(√2)b     r=(b/a)(√(a^2 −b^2 ))  Isnt it this to summarize, Sir? Thanks.

Ifa2bthensuchr=a2Andifa2br=baa2b2Isntitthistosummarize,Sir?Thanks.

Commented by mr W last updated on 27/Jan/25

if a=(√2)b then r=(a/2).  if a<(√2)b then no inscribed circle   possible.

ifa=2bthenr=a2.ifa<2bthennoinscribedcirclepossible.

Answered by aleks041103 last updated on 27/Jan/25

Commented by aleks041103 last updated on 27/Jan/25

The circle is tangent to the ellipse and therefore  the radius is ⊥ to the tangent to the ellipse  at this point.  The tangent of an ellipse is ⊥ to the angle  bisector of the angle between the segments  connecting point the foci to the point.  Thus we get the top schematic.  Now:  x+y=2a ⇒ y=2a−x  (x/y)=((c+r)/(c−r))  xy−(c+r)(c−r)=r^2  ⇒ xy=c^2 =a^2 −b^2   c=a(√(1−((b/a))^2 ))  ⇒x(2a−x)=a^2 −b^2   ⇒(x−a)^2 −b^2 =0  ⇒x=a+b;a−b  but x>y ⇒ x=a+b, y=a−b  ⇒(x/h)=((a+b)/(a−b))=((c+r)/(c−r))  ⇒r=((bc)/a)  ⇒r=b(√(1−((b/a))^2 ))

Thecircleistangenttotheellipseandthereforetheradiusistothetangenttotheellipseatthispoint.Thetangentofanellipseistotheanglebisectoroftheanglebetweenthesegmentsconnectingpointthefocitothepoint.Thuswegetthetopschematic.Now:x+y=2ay=2axxy=c+rcrxy(c+r)(cr)=r2xy=c2=a2b2c=a1(ba)2x(2ax)=a2b2(xa)2b2=0x=a+b;abbutx>yx=a+b,y=abxh=a+bab=c+rcrr=bcar=b1(ba)2

Commented by aleks041103 last updated on 27/Jan/25

The radius to the point P (original schematic)  is perpendicular(⊥) to the tangent of the  ellipse at P (since the tangent of the circle  coinsides with the tangent to the ellipse).

TheradiustothepointP(originalschematic)isperpendicular()tothetangentoftheellipseatP(sincethetangentofthecirclecoinsideswiththetangenttotheellipse).

Commented by mr W last updated on 27/Jan/25

thanks for this nice solution!

thanksforthisnicesolution!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com