All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 216074 by CrispyXYZ last updated on 27/Jan/25
findthemaximumofy=∣sinx∣+∣sin2x∣.
Answered by efronzo1 last updated on 27/Jan/25
y=∣sinx∣+2∣sinx∣1−sin2xy=∣sinx∣(1+21−sin2x)Let∣sinx∣=sin2x=ty=t(1+21−t2)y′=1+21−t2+t(−2t1−t2)=01−t2+2(1−t2)−2t2=04t2−2=1−t216t4−16t2+4=1−t216t4−15t2+3=0t2=15+3332ort2=15−3332sinx=15+3332orsinx=15−3332=30+2338or=30−2338
Answered by Frix last updated on 27/Jan/25
y=∣sinx∣+∣sin2x∣isperiodicandsymmetricIt′senoughtolookattheinterval[0,π2]wherey=sinx+sin2xy′=0⇒cos2x+cosx4−12=0cosx=−18±3380⩽x⩽π2⇒x=cos−1(−18+338)ymax=6(69+113316≈1.76017259
Terms of Service
Privacy Policy
Contact: info@tinkutara.com