All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 216253 by MATHEMATICSAM last updated on 01/Feb/25
Ifxisapositiveacuteangleandsinx+sin2x+sin3x=1thenfindminimumvalueofcot2x.
Commented by Frix last updated on 03/Feb/25
There′sexactly1solutiontothegivenequationthusthere′sexactlyonevalueofcot2xsinx=−1+(1727−339)13+(1727+339)133≈.543689x≈32.9351°cot2x=(2−2339)13+(2+2339)13≈2.38298
Answered by AntonCWX last updated on 03/Feb/25
letu=sin(x)u+u2+u3=1u3+u2+u−1=0ByLagrange′sResolvent,⇒z2+(2(1)3−9(1)(1)+27(−1))z+(12−3(1))3=0⇒z2−34z−8=0⇒z=17∓333u=−(1)+17−3333+17+33333=0.543689sin(x)=0.543689⇒sin2(x)=0.295598x=32.94°cot2(x)=2.38209
Terms of Service
Privacy Policy
Contact: info@tinkutara.com