Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 216646 by York12 last updated on 13/Feb/25

Let a,b,c be positive roots of an cubic equation such that  ab+bc+ac+abc=4, show using vieta′s relations that  (a/(a+2))+(b/(b+2))+(c/(c+2))=1

Leta,b,cbepositiverootsofancubicequationsuchthatab+bc+ac+abc=4,showusingvietasrelationsthataa+2+bb+2+cc+2=1

Answered by A5T last updated on 14/Feb/25

((a(b+2)(c+2)+b(a+2)(c+2)+c(a+2)(b+2))/((a+2)(b+2)(c+2)))=1  ⇔3abc+4ab+4ac+4a+4bc+4b+4c=(a+2)(b+2)(c+2)  ⇔16−abc+4(a+b+c)  =abc+2ab+2ac+4a+2bc+4b+4c+8  ⇔4−abc=(ab+bc+ca) which is true.

a(b+2)(c+2)+b(a+2)(c+2)+c(a+2)(b+2)(a+2)(b+2)(c+2)=13abc+4ab+4ac+4a+4bc+4b+4c=(a+2)(b+2)(c+2)16abc+4(a+b+c)=abc+2ab+2ac+4a+2bc+4b+4c+84abc=(ab+bc+ca)whichistrue.

Commented by York12 last updated on 14/Feb/25

Thank  you but I need a solution based on vieta

ThankyoubutIneedasolutionbasedonvieta

Answered by Rasheed.Sindhi last updated on 14/Feb/25

Let the equation is: x^3 −px^2 +qx−r=0  According to Vieta′s formulas:   { ((a+b+c=p)),((ab+bc+ca=q)),((abc=r)) :}  Given: ab+bc+ac+abc=4⇒q+r=4  (a/(a+2))+(b/(b+2))+(c/(c+2))=1  ⇒(1−(2/(a+2)))+(1−(2/(b+2)))+(1−(2/(c+2)))=1  ⇒3−2((1/(a+2))+(1/(b+2))+(1/(c+2)))=1  ⇒(1/(a+2))+(1/(b+2))+(1/(c+2))=1  ⇒(b+2)(c+2)+(a+2)(c+2)+(a+2)(b+2)         =(a+2)(b+2)(c+2)  ⇒bc+2b+2c+4+ac+2a+2c+4+ab+2a+2b+4      =abc+2(ab+bc+ca)+4(a+b+c)+8  ⇒ab+bc+ca+4(a+b+c)+12      =abc+2(ab+bc+ca)+4(a+b+c)+8  ⇒q+4p+12=r+2q+4p+8  ⇒q+12=r+2q+8  ⇒q+r=4   which is according to given.  Hence   (a/(a+2))+(b/(b+2))+(c/(c+2))=1

Lettheequationis:x3px2+qxr=0AccordingtoVietasformulas:{a+b+c=pab+bc+ca=qabc=rGiven:ab+bc+ac+abc=4q+r=4aa+2+bb+2+cc+2=1(12a+2)+(12b+2)+(12c+2)=132(1a+2+1b+2+1c+2)=11a+2+1b+2+1c+2=1(b+2)(c+2)+(a+2)(c+2)+(a+2)(b+2)=(a+2)(b+2)(c+2)bc+2b+2c+4+ac+2a+2c+4+ab+2a+2b+4=abc+2(ab+bc+ca)+4(a+b+c)+8ab+bc+ca+4(a+b+c)+12=abc+2(ab+bc+ca)+4(a+b+c)+8q+4p+12=r+2q+4p+8q+12=r+2q+8q+r=4whichisaccordingtogiven.Henceaa+2+bb+2+cc+2=1

Answered by Rasheed.Sindhi last updated on 14/Feb/25

  (a/(a+2))+(b/(b+2))+(c/(c+2))=1  (a/(a+2))−1+(b/(b+2))−1+(c/(c+2))−1=1−3  ((−2)/(a+2))+((−2)/(b+2))+((−2)/(c+2))=−2  (1/(a+2))+(1/(b+2))+(1/(c+2))=1  ▶(b+2)(c+2)+(a+2)(c+2)+(a+2)(b+2)       =(a+2)(b+2)(c+2)  ▶ab+bc+ca+12+4(a+b+c)        =abc+2(ab+bc+ca)+4(a+b+c)+8  ▶ab+bc+ca+12        =abc+2(ab+bc+ca)+8  ▶ ab+bc+ca+abc=4 (Given)  Hence       (a/(a+2))+(b/(b+2))+(c/(c+2))=1

aa+2+bb+2+cc+2=1aa+21+bb+21+cc+21=132a+2+2b+2+2c+2=21a+2+1b+2+1c+2=1(b+2)(c+2)+(a+2)(c+2)+(a+2)(b+2)=(a+2)(b+2)(c+2)ab+bc+ca+12+4(a+b+c)=abc+2(ab+bc+ca)+4(a+b+c)+8ab+bc+ca+12=abc+2(ab+bc+ca)+8ab+bc+ca+abc=4(Given)Henceaa+2+bb+2+cc+2=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com