Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 216694 by sniper237 last updated on 16/Feb/25

Prove that ^3 (√((√5)+2)) −^3 (√((√5)−2)) =1

Provethat35+2352=1

Answered by golsendro last updated on 16/Feb/25

 let x= (((√5)+2))^(1/3) −(((√5)−2))^(1/3)    (((√5)+2))^(1/3) −(((√5)−2))^(1/3) −x = 0    (√5) +2 −(√5) +2 −x^3  = 3x ((5−4))^(1/3)     x^3 +3x−4 = 0     x=1

letx=5+235235+23523x=05+25+2x3=3x543x3+3x4=0x=1

Answered by Ghisom last updated on 16/Feb/25

Φ=(1/2)+((√5)/2)  Φ^(−1) =−(1/2)+((√5)/2)  Φ^3 =2+(√5)  Φ^(−3) =−2+(√5)  the rest is easy

Φ=12+52Φ1=12+52Φ3=2+5Φ3=2+5therestiseasy

Answered by Rasheed.Sindhi last updated on 16/Feb/25

(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  =a   (((√5) −2))^(1/3)  =1/a  Asume a−(1/a)=x  a^3 −(1/a^3 )−3(a−(1/a))=x^3   ((√5) +2)−((√5) −2)−3(x)=x^3   x^3 +3x−4=0  (x−1)(x^2 +x+4)=0  ⇒x=1

5+23523=1let5+23=a523=1/aAsumea1a=xa31a33(a1a)=x3(5+2)(52)3(x)=x3x3+3x4=0(x1)(x2+x+4)=0x=1

Answered by Rasheed.Sindhi last updated on 16/Feb/25

(((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =1  let (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  =x        (((√5) +2))^(1/3)  −(((√5) −2))^(1/3)  −x=0      −((−(√5) −2))^(1/3)  −(((√5) −2))^(1/3)  −x=0      ((−(√5) −2))^(1/3)  +(((√5) −2))^(1/3)  +x=0   determinant (((a+b+c=0_(⇒a^3 +b^3 +c^3 =3abc) )))  ⇒(−(√5) −2)+((√5) −2)+x^3      =3( ((−(√5) −2))^(1/3) )((((√5) −2))^(1/3) )(x)  x^3 −4=−3x((((√5) +2)((√5)−2)))^(1/3)    x^3 +3x(1)−4=0  (x−1)(x^2 +x+4)=0  ⇒x=1(proved)

5+23523=1let5+23523=x5+23523x=0523523x=0523+523+x=0a+b+c=0a3+b3+c3=3abc(52)+(52)+x3=3(523)(523)(x)x34=3x(5+2)(52)3x3+3x(1)4=0(x1)(x2+x+4)=0x=1(proved)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com