Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 216734 by mnjuly1970 last updated on 17/Feb/25

Answered by sniper237 last updated on 18/Feb/25

Let E={f:A→B}  , ∣E∣=3^m    E\S={f∈E,  ∣f(A)∣=1 or 2}  ∣E\S∣= C_3 ^1 .1^m +C_3 ^2 .(2^m −1^m −1^m )=3.2^m −3  So  ∣S∣=3^m −(3.2^m −3)

LetE={f:AB},E∣=3mES={fE,f(A)∣=1or2}ES∣=C31.1m+C32.(2m1m1m)=3.2m3SoS∣=3m(3.2m3)

Commented by mehdee7396 last updated on 18/Feb/25

note : 3^m −(3×2^m −3)≠3^m −3×2^m −3

note:3m(3×2m3)3m3×2m3

Commented by mnjuly1970 last updated on 18/Feb/25

 thanks alot...

thanksalot...

Answered by mehdee7396 last updated on 19/Feb/25

let  A={a_i : 1≤i≤m} &  B={b_1 ,b_2 ,b_3 }  F={f:A→B∣f(a)=b  ;a∈A , b∈B}  f_1 ={f:A→B∣f(a_i )≠b_1 }  f_2 ={f:A→B∣f(a_2 )≠b_2 }  f_3 ={f:A→B∣f(a_i )≠b_3 }  ⇒∣F∣=3^m   &  ∣f_i ∣=2^m  &  ∣f_i ∩f_j ∣=1  &  ∣f_1 ∩f_2 ∩f_3 ∣=0  ⇒∣S∣=∣F∣−Σ∣f_i ∣+Σ∣f_i ∩f_j ∣−∣f_1 ∩f_2 ∩f_3 ∣  =3^m −3×2^m +3

letA={ai:1im}&B={b1,b2,b3}F={f:ABf(a)=b;aA,bB}f1={f:ABf(ai)b1}f2={f:ABf(a2)b2}f3={f:ABf(ai)b3}⇒∣F∣=3m&fi∣=2m&fifj∣=1&f1f2f3∣=0⇒∣S∣=∣FΣfi+Σfifjf1f2f3=3m3×2m+3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com