All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 216799 by OPAVdx last updated on 20/Feb/25
Commented by MathematicalUser2357 last updated on 22/Feb/25
sen?
Answered by MATHEMATICSAM last updated on 22/Feb/25
∫exsinxdxu=sinx⇒du=cosxdxdv=exdx⇒v=ex∫udv=uv−∫vdu=exsinx−∫excosxdx....(i)Nowletsintegrate∫excosxdxNowu=cosx⇒du=−sinxdxdv=exdx⇒v=ex∫udv=uv−∫vdu=excosx+∫exsinxdx...(ii)From(i)and(ii)∫exsinxdx=exsinx−excosx−∫exsinxdx⇒2∫exsinxdx=ex(sinx−cosx)⇒∫exsinxdx=ex(sinx−cosx)2+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com