Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      

Question Number 216800 by depressiveshrek last updated on 21/Feb/25

Answered by MrGaster last updated on 21/Feb/25

Prove:f(x)=a(x−r_1 )^m_1  (x−r_2 )^m_2  …(x−r_k )^m_k    where a>0,r_1 ,r_2 ,…,r_k are the distinct  real roots of f(x),and m_1 ,m_2 ,…m_k are  their respective multiplicities (1)  The derivatives of f(x)are:  f^((j)) (x)=aΣ_(i=1) ^k ((m_i !)/((m_i −j)!))(x−r_i )^(m_i −j) Π_(l≠i) (x−r_i )^m_l    for j=1,2,…,n.  g(x):  g(x)=f(x)+f′(x)…+f^((n)) (x)  Substituting the expressionsfor thes  derivative  have:  g(x)=aΣ_(j=0) ^n Σ_(i=1) ^k ((m_i !)/((m_i −j)))(x−r_i )^(m_i −j) Π_(l≠j) (x−r_l )^m_l  (2)  since f(x)≥0 for all x,each term in the sum f(x)+f′(x)+…+f^((n)) is nonnegative. Specificallyr  fo each root r_i ,the terms involving (x−r_i )^(m−j) for j=0,1,…m_i are nonnegative because m_i −j≥0  Therefore the sum of theser  tems is also nonnegative.c  Hene,g(x)is a sum of nonnegatives  term which implies:   determinant (((g(x)≥0)))  [Q.E.D]

Prove:f(x)=a(xr1)m1(xr2)m2(xrk)mkwherea>0,r1,r2,,rkarethedistinctrealrootsoff(x),andm1,m2,mkaretheirrespectivemultiplicities(1)Thederivativesoff(x)are:f(j)(x)=aki=1mi!(mij)!(xri)mijli(xri)mlforj=1,2,,n.g(x):g(x)=f(x)+f(x)+f(n)(x)Substitutingtheexpressionsforthesderivativehave:g(x)=anj=0ki=1mi!(mij)(xri)mijlj(xrl)ml(2)sincef(x)0forallx,eachterminthesumf(x)+f(x)++f(n)isnonnegative.Specificallyrfoeachrootri,thetermsinvolving(xri)mjforj=0,1,miarenonnegativebecausemij0Thereforethesumofthesertemsisalsononnegative.cHene,g(x)isasumofnonnegativestermwhichimplies:g(x)0[Q.E.D]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com