All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation
Question Number 216800 by depressiveshrek last updated on 21/Feb/25
Answered by MrGaster last updated on 21/Feb/25
Prove:f(x)=a(x−r1)m1(x−r2)m2…(x−rk)mkwherea>0,r1,r2,…,rkarethedistinctrealrootsoff(x),andm1,m2,…mkaretheirrespectivemultiplicities(1)Thederivativesoff(x)are:f(j)(x)=a∑ki=1mi!(mi−j)!(x−ri)mi−j∏l≠i(x−ri)mlforj=1,2,…,n.g(x):g(x)=f(x)+f′(x)…+f(n)(x)Substitutingtheexpressionsforthesderivativehave:g(x)=a∑nj=0∑ki=1mi!(mi−j)(x−ri)mi−j∏l≠j(x−rl)ml(2)sincef(x)≥0forallx,eachterminthesumf(x)+f′(x)+…+f(n)isnonnegative.Specificallyrfoeachrootri,thetermsinvolving(x−ri)m−jforj=0,1,…miarenonnegativebecausemi−j≥0Thereforethesumofthesertemsisalsononnegative.cHene,g(x)isasumofnonnegativestermwhichimplies:g(x)≥0[Q.E.D]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com