Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 216830 by MrGaster last updated on 22/Feb/25

Prove:∀x∈R,∣cos x∣+∣cos 2x∣+…+∣cos nx∣≥((n−1)/2)(n∈Z_(>0) )

Prove:xR,cosx+cos2x++cosnx∣≥n12(nZ>0)

Commented by MathematicalUser2357 last updated on 25/Feb/25

Or you could do {n∣n∈Z∧n>0} (or {n∣n∈N})

Oryoucoulddo{nnZn>0}(or{nnN})

Answered by MrGaster last updated on 23/Feb/25

Prove:Σ_(k=1) ^n ∣cos(kπ)∣≥((n−1)/2) (n ∈ Z_(>0) )  Let S_n (x)=Σ_(k=1) ^n ∣cos(kx)∣  ⇒S_n (x)=∣cos(x)∣+∣cos(2x)∣+…+∣cos(nx)∣  Consider T_n (x)=Σ_(k=1) ^n cos(kπ)  =((sin(((nx)/2))cos((((n+1)x)/2)))/(sin((x/2))))  ⇒∣T_n (x)∣≤(1/(∣sin((x/2))∣))  Let U_n (x)=Σ_(k=1) ^n cos^2 (kπ)  =(n/2)+(1/2)Σ_(k=1) ^n cos(2kx)  =(n/2)+(1/2)(((sin(nx)cos((n+1)x))/(sin(x))))  ⇒U_n (x)≤(n/2)+(1/2)  ∵ ∣cos(kx)∣≥cos^2 (kx)  ⇒S_n (x)≥U_n (x)  ⇒S_n (x)≥(n/2)−(1/2)  ∴S_n (x)≥((n−1)/2)  [Q.E.D]

Prove:nk=1cos(kπ)∣≥n12(nZ>0)LetSn(x)=nk=1cos(kx)Sn(x)=∣cos(x)+cos(2x)++cos(nx)ConsiderTn(x)=nk=1cos(kπ)=sin(nx2)cos((n+1)x2)sin(x2)⇒∣Tn(x)∣≤1sin(x2)LetUn(x)=nk=1cos2(kπ)=n2+12nk=1cos(2kx)=n2+12(sin(nx)cos((n+1)x)sin(x))Un(x)n2+12cos(kx)∣≥cos2(kx)Sn(x)Un(x)Sn(x)n212Sn(x)n12[Q.E.D]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com