All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 216830 by MrGaster last updated on 22/Feb/25
Prove:∀x∈R,∣cosx∣+∣cos2x∣+…+∣cosnx∣≥n−12(n∈Z>0)
Commented by MathematicalUser2357 last updated on 25/Feb/25
Oryoucoulddo{n∣n∈Z∧n>0}(or{n∣n∈N})
Answered by MrGaster last updated on 23/Feb/25
Prove:∑nk=1∣cos(kπ)∣≥n−12(n∈Z>0)LetSn(x)=∑nk=1∣cos(kx)∣⇒Sn(x)=∣cos(x)∣+∣cos(2x)∣+…+∣cos(nx)∣ConsiderTn(x)=∑nk=1cos(kπ)=sin(nx2)cos((n+1)x2)sin(x2)⇒∣Tn(x)∣≤1∣sin(x2)∣LetUn(x)=∑nk=1cos2(kπ)=n2+12∑nk=1cos(2kx)=n2+12(sin(nx)cos((n+1)x)sin(x))⇒Un(x)≤n2+12∵∣cos(kx)∣≥cos2(kx)⇒Sn(x)≥Un(x)⇒Sn(x)≥n2−12∴Sn(x)≥n−12[Q.E.D]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com