Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 216836 by hardmath last updated on 22/Feb/25

Find:  (((1 + tan1°)(1 + tan2°)...(1 + tan44°))/((1−tan46°)(1−tan47°)...(1−tan89°))) = ?

Find:(1+tan1°)(1+tan2°)...(1+tan44°)(1tan46°)(1tan47°)...(1tan89°)=?

Answered by BaliramKumar last updated on 22/Feb/25

1

1

Answered by mehdee7396 last updated on 22/Feb/25

(((s1+s89)(s2+s88)....(s43+s47)(s44+s46))/((s44−s46)(s43−s47)...(s2−s88)(s1−s89)))×((c46×c47×...×c89)/(c1×c2×...×c44))  =((s45c44)/(−s45c1))×((s45c43)/(−s45c2))×((s45c42)/(−s45c3))×...×((s45c2)/(−s45c43))×((s45c1)/(−s45c44))  =1

(s1+s89)(s2+s88)....(s43+s47)(s44+s46)(s44s46)(s43s47)...(s2s88)(s1s89)×c46×c47×...×c89c1×c2×...×c44=s45c44s45c1×s45c43s45c2×s45c42s45c3×...×s45c2s45c43×s45c1s45c44=1

Commented by hardmath last updated on 22/Feb/25

s=sinus  c=cosinus

s=sinusc=cosinus

Answered by MrGaster last updated on 23/Feb/25

Let P=Π_(k=1) ^(44) (1+tan k°)∧Q=Π_(k=46) ^(89) (1−tan k°).Find((P/Q))  tan(90°−x°)=cot x°⊢tan(90^° −x°)=cot x°,we have:  tan(90°−k°)=cot k°=(1/(tan k°))  ⇒1−tan(90°−k)=1−(1/(tan k°))=((tan k°−1)/(tan k°))  Now consider the product:  P∙Π_(k=1) ^(44) ((tan k°−1)/(tan k°))=Π_(k=1) ^(44) (1+tan k°)∙((tan k°−1)/(tan k°))=Π_(k=1) ^(44) (((tan k°+1)(tan k°−1))/(tan k°))  =Π_(k=1) ^(44) ((tan^2 k°−1)/(tan k°))  tan(45°+x°)=((1+tan x°)/(1−tanx°)) ⊢tan(45^° +k°)∙tan(45°−k°)=1  ⇒tan(45°+k°)=(1/(tan(45°−k°)))  This implies:  tan(45°+k°)∙tan(45∙k°)=((1+tan k°)/(1−tan k))∙((1−tan k)/(1+tan k))=1  so,Π simplifies to:  P∙Π_(k=1) ^(44) ((tan k°−1)/(tan k°))=Π_(k=1) ^(44) ((tan^2 k°−1)/(tan k°))=Π_(k=1) ^(44) tan(45^° +k°)∙tan(45°−k°)  =Π_(k=1) ^(44) 1=1  so,P=Π_(k=1) ^(44) ((tan k°)/(tan k°−1)),Now consider:  (P/Q)=((Π_(k=1) ^(44) (1+tan k°))/(Π_(k=46) ^(89) (1−tan k°)))=Π_(k=1) ^(44) ((1+tan k°)/(1−tan(90°−k°)))  =Π_(k=1) ^(44) ((1+tan k°)/(1−cot k°))=Π_(k=1) ^(44) ((1+tan k°)/((1−tan k°)/(tan k°)))  =Π_(k=1) ^(44) ((tan k°(1+tan k°))/(1−tan k°))  tan(45°+x°)=((1+tan x°)/(1−tan x°)) ⊢tan(45°+k^° )=((1+tan k°)/(1−tan k°))  ⇒(P/Q)=Π_(k=1) ^(44) tan(45°+k°)=tan(45°+1°)∙tan(45+°2)∙…∙tan(45°+44°)  ∵tan(45°+x°)=((1+tan x°)/(1−tan x))⇒(P/Q)=((1+tan 1)/(1−tan 1°))∙((1+tan 2°)/(1−tan 2°))∙…∙((1+tan 44°)/(1−tan 44°))  so,= determinant ((1))

LetP=44k=1(1+tank°)Q=89k=46(1tank°).Find(PQ)tan(90°x°)=cotx°tan(90°x°)=cotx°,wehave:tan(90°k°)=cotk°=1tank°1tan(90°k)=11tank°=tank°1tank°Nowconsidertheproduct:P44k=1tank°1tank°=44k=1(1+tank°)tank°1tank°=44k=1(tank°+1)(tank°1)tank°=44k=1tan2k°1tank°tan(45°+x°)=1+tanx°1tanx°tan(45°+k°)tan(45°k°)=1tan(45°+k°)=1tan(45°k°)Thisimplies:tan(45°+k°)tan(45k°)=1+tank°1tank1tank1+tank=1so,Πsimplifiesto:P44k=1tank°1tank°=44k=1tan2k°1tank°=44k=1tan(45°+k°)tan(45°k°)=44k=11=1so,P=44k=1tank°tank°1,Nowconsider:PQ=44k=1(1+tank°)89k=46(1tank°)=44k=11+tank°1tan(90°k°)=44k=11+tank°1cotk°=44k=11+tank°1tank°tank°=44k=1tank°(1+tank°)1tank°tan(45°+x°)=1+tanx°1tanx°tan(45°+k°)=1+tank°1tank°PQ=44k=1tan(45°+k°)=tan(45°+1°)tan(45+°2)tan(45°+44°)tan(45°+x°)=1+tanx°1tanxPQ=1+tan11tan1°1+tan2°1tan2°1+tan44°1tan44°so,=1

Commented by hardmath last updated on 23/Feb/25

  Excellent solution, thank you very much dear professor

Excellent solution, thank you very much dear professor

Terms of Service

Privacy Policy

Contact: info@tinkutara.com