All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 216907 by MrGaster last updated on 24/Feb/25
Prove:n!=1+∑∞k=1knek−∑∞k=1Bksin(πk)(n−k)!πk
Answered by MrGaster last updated on 13/Mar/25
Letf(x)=xex−1&⇔xex−1=∑∞k=0Bkk!xkn!&n!=Γ(n+1)⇒Γ(n+1)=∫0∞tne−tdtUsingtheEuler−Maclaurinr⇒∑∞k=1f(k)=∫1∞f(x)dx+f(1)2+∑mk=1B2k(2k)!f(2k+1)(1)+Rmf(x)=xnex⇒∑∞k=1knek=∫1∞xnexdx+12e+Rm&⇔f(x)=Bksin(πk)(n−k)!πk⇒∑∞n=1Bksin(πk)(n−k)!πk=∫1∞Bksin(πx)(n−x)!πxdx+B1sin(π)(n−1)!π+∑mk=1B2k(2k)!d2k−1dx2k−1(Bksin(πx)(n−x)!πx)∣x=1+RmCombiningtheseresults⇒n!=1+∑∞k=1knek−∑∞k=1Bksin(πk)(n−k)!πk[Q.E.D]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com