Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 21693 by Tinkutara last updated on 01/Oct/17

How many six-digit numbers contain  exactly four different digits?

$${How}\:{many}\:{six}-{digit}\:{numbers}\:{contain} \\ $$$${exactly}\:{four}\:{different}\:{digits}? \\ $$

Commented by mrW1 last updated on 02/Oct/17

9 numbers with exactly 1 distinct digits  2511 numbers with exactly 2 distinct digits  58320 numbers with exactly 3 distinct digits  294840 numbers with exactly 4 distinct digits  408240 numbers with exactly 5 distinct digits  136080 numbers with exactly 6 distinct digits  Σ 900000 numbers

$$\mathrm{9}\:\mathrm{numbers}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{1}\:\mathrm{distinct}\:\mathrm{digits} \\ $$$$\mathrm{2511}\:\mathrm{numbers}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{2}\:\mathrm{distinct}\:\mathrm{digits} \\ $$$$\mathrm{58320}\:\mathrm{numbers}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{3}\:\mathrm{distinct}\:\mathrm{digits} \\ $$$$\mathrm{294840}\:\mathrm{numbers}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{4}\:\mathrm{distinct}\:\mathrm{digits} \\ $$$$\mathrm{408240}\:\mathrm{numbers}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{5}\:\mathrm{distinct}\:\mathrm{digits} \\ $$$$\mathrm{136080}\:\mathrm{numbers}\:\mathrm{with}\:\mathrm{exactly}\:\mathrm{6}\:\mathrm{distinct}\:\mathrm{digits} \\ $$$$\Sigma\:\mathrm{900000}\:\mathrm{numbers} \\ $$

Commented by Tinkutara last updated on 02/Oct/17

Only 4^(th)  line is needed. Can you explain  how you get it?

$$\mathrm{Only}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{line}\:\mathrm{is}\:\mathrm{needed}.\:\mathrm{Can}\:\mathrm{you}\:\mathrm{explain} \\ $$$$\mathrm{how}\:\mathrm{you}\:\mathrm{get}\:\mathrm{it}? \\ $$

Commented by mrW1 last updated on 05/Oct/17

for k=1...6  (9/(10))×C_k ^(10) ×k!×{_k ^6 }  k=1: ⇒ (9/(10))×10×1×1=9  k=2: ⇒ (9/(10))×45×2×31=2511  k=3: ⇒ (9/(10))×120×6×90=58320  k=4: ⇒ (9/(10))×210×24×65=294840  k=5: ⇒ (9/(10))×252×120×15=408240  k=6: ⇒ (9/(10))×210×720×1=136080

$$\mathrm{for}\:\mathrm{k}=\mathrm{1}...\mathrm{6} \\ $$$$\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{C}_{\mathrm{k}} ^{\mathrm{10}} ×\mathrm{k}!×\left\{_{\mathrm{k}} ^{\mathrm{6}} \right\} \\ $$$$\mathrm{k}=\mathrm{1}:\:\Rightarrow\:\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{10}×\mathrm{1}×\mathrm{1}=\mathrm{9} \\ $$$$\mathrm{k}=\mathrm{2}:\:\Rightarrow\:\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{45}×\mathrm{2}×\mathrm{31}=\mathrm{2511} \\ $$$$\mathrm{k}=\mathrm{3}:\:\Rightarrow\:\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{120}×\mathrm{6}×\mathrm{90}=\mathrm{58320} \\ $$$$\mathrm{k}=\mathrm{4}:\:\Rightarrow\:\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{210}×\mathrm{24}×\mathrm{65}=\mathrm{294840} \\ $$$$\mathrm{k}=\mathrm{5}:\:\Rightarrow\:\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{252}×\mathrm{120}×\mathrm{15}=\mathrm{408240} \\ $$$$\mathrm{k}=\mathrm{6}:\:\Rightarrow\:\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{210}×\mathrm{720}×\mathrm{1}=\mathrm{136080} \\ $$

Commented by mrW1 last updated on 05/Oct/17

explanation:    to select k digits from 10 (incl. 0) there  are C_k ^(10)  ways    to divide 6 positions into k groups there  are {_k ^6 } ways, where {} means stirling  number of second kind    to arrange k digits there are k! ways    since digit 0 is not allowed in the first  position, the result should be reduced  to (9/(10))    ⇒(9/(10))×C_k ^(10) ×k!×{_k ^6 }    I worked out this solution by myself,  so I′m not sure if it′s correct. pls check.

$$\mathrm{explanation}: \\ $$$$ \\ $$$$\mathrm{to}\:\mathrm{select}\:\mathrm{k}\:\mathrm{digits}\:\mathrm{from}\:\mathrm{10}\:\left(\mathrm{incl}.\:\mathrm{0}\right)\:\mathrm{there} \\ $$$$\mathrm{are}\:\mathrm{C}_{\mathrm{k}} ^{\mathrm{10}} \:\mathrm{ways} \\ $$$$ \\ $$$$\mathrm{to}\:\mathrm{divide}\:\mathrm{6}\:\mathrm{positions}\:\mathrm{into}\:\mathrm{k}\:\mathrm{groups}\:\mathrm{there} \\ $$$$\mathrm{are}\:\left\{_{\mathrm{k}} ^{\mathrm{6}} \right\}\:\mathrm{ways},\:\mathrm{where}\:\left\{\right\}\:\mathrm{means}\:\mathrm{stirling} \\ $$$$\mathrm{number}\:\mathrm{of}\:\mathrm{second}\:\mathrm{kind} \\ $$$$ \\ $$$$\mathrm{to}\:\mathrm{arrange}\:\mathrm{k}\:\mathrm{digits}\:\mathrm{there}\:\mathrm{are}\:\mathrm{k}!\:\mathrm{ways} \\ $$$$ \\ $$$$\mathrm{since}\:\mathrm{digit}\:\mathrm{0}\:\mathrm{is}\:\mathrm{not}\:\mathrm{allowed}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first} \\ $$$$\mathrm{position},\:\mathrm{the}\:\mathrm{result}\:\mathrm{should}\:\mathrm{be}\:\mathrm{reduced} \\ $$$$\mathrm{to}\:\frac{\mathrm{9}}{\mathrm{10}} \\ $$$$ \\ $$$$\Rightarrow\frac{\mathrm{9}}{\mathrm{10}}×\mathrm{C}_{\mathrm{k}} ^{\mathrm{10}} ×\mathrm{k}!×\left\{_{\mathrm{k}} ^{\mathrm{6}} \right\} \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{worked}\:\mathrm{out}\:\mathrm{this}\:\mathrm{solution}\:\mathrm{by}\:\mathrm{myself}, \\ $$$$\mathrm{so}\:\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{it}'\mathrm{s}\:\mathrm{correct}.\:\mathrm{pls}\:\mathrm{check}. \\ $$

Commented by Tinkutara last updated on 05/Oct/17

I don′t know any sterling function.

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{any}\:\mathrm{sterling}\:\mathrm{function}. \\ $$

Commented by mrW1 last updated on 05/Oct/17

the number of ways to divide n  distinct objects into k groups with at  least one object in each group is:  {_k ^n }=(1/(k!)) Σ_(j=0) ^k  (−1)^(k−j)  (_j ^k ) j^n   {} is called stirling number of 2. kind

$$\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:\mathrm{to}\:\mathrm{divide}\:\mathrm{n} \\ $$$$\mathrm{distinct}\:\mathrm{objects}\:\mathrm{into}\:\mathrm{k}\:\mathrm{groups}\:\mathrm{with}\:\mathrm{at} \\ $$$$\mathrm{least}\:\mathrm{one}\:\mathrm{object}\:\mathrm{in}\:\mathrm{each}\:\mathrm{group}\:\mathrm{is}: \\ $$$$\left\{_{\mathrm{k}} ^{\mathrm{n}} \right\}=\frac{\mathrm{1}}{\mathrm{k}!}\:\underset{\mathrm{j}=\mathrm{0}} {\overset{\mathrm{k}} {\sum}}\:\left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{j}} \:\left(_{\mathrm{j}} ^{\mathrm{k}} \right)\:\mathrm{j}^{\mathrm{n}} \\ $$$$\left\{\right\}\:\mathrm{is}\:\mathrm{called}\:\mathrm{stirling}\:\mathrm{number}\:\mathrm{of}\:\mathrm{2}.\:\mathrm{kind} \\ $$

Commented by mrW1 last updated on 05/Oct/17

Commented by Tinkutara last updated on 05/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by mrW1 last updated on 06/Oct/17

what is the solution in your book?

$$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{in}\:\mathrm{your}\:\mathrm{book}? \\ $$

Commented by Tinkutara last updated on 06/Oct/17

Its very confusing but the one which I  understand is:

$$\mathrm{Its}\:\mathrm{very}\:\mathrm{confusing}\:\mathrm{but}\:\mathrm{the}\:\mathrm{one}\:\mathrm{which}\:\mathrm{I} \\ $$$$\mathrm{understand}\:\mathrm{is}: \\ $$

Commented by Tinkutara last updated on 06/Oct/17

Commented by Tinkutara last updated on 06/Oct/17

Commented by Tinkutara last updated on 06/Oct/17

Commented by Tinkutara last updated on 06/Oct/17

Commented by mrW1 last updated on 06/Oct/17

the result is the same. my formula  (9/(10))×(_(  4) ^(10) )×4!×{_4 ^6 } is more simple.

$$\mathrm{the}\:\mathrm{result}\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}.\:\mathrm{my}\:\mathrm{formula} \\ $$$$\frac{\mathrm{9}}{\mathrm{10}}×\left(_{\:\:\mathrm{4}} ^{\mathrm{10}} \right)×\mathrm{4}!×\left\{_{\mathrm{4}} ^{\mathrm{6}} \right\}\:\mathrm{is}\:\mathrm{more}\:\mathrm{simple}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com