Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 217080 by hardmath last updated on 28/Feb/25

Commented by mr W last updated on 01/Mar/25

also Area(ABCD)≤(√(abcd))

alsoArea(ABCD)abcd

Answered by mr W last updated on 01/Mar/25

Commented by mr W last updated on 01/Mar/25

say the diagonals are e and f with  angle θ between them.  according to euler′s quadrilateral  theorem:  a^2 +b^2 +c^2 +d^2 =e^2 +f^2 +4g^2   ⇒e^2 +f^2 ≤a^2 +b^2 +c^2 +d^2   [ABCD]=(([A′B′C′D′])/2)                     =((ef sin θ)/2)                     ≤((ef)/2)                     ≤((e^2 +f^2 )/4)                     ≤((a^2 +b^2 +c^2 +d^2 )/4)   ✓

saythediagonalsareeandfwithangleθbetweenthem.accordingtoeulersquadrilateraltheorem:a2+b2+c2+d2=e2+f2+4g2e2+f2a2+b2+c2+d2[ABCD]=[ABCD]2=efsinθ2ef2e2+f24a2+b2+c2+d24

Answered by mr W last updated on 02/Mar/25

a quadrilateral with sides a, b, c, d  has the maximum area when it is  cyclic.  this maximum area is  (√((s−a)(a−b)(s−c)(s−d))) with  s=((a+b+c+d)/2). my proof see Q30233.  that means  Area (ABCD)_(arbitrary)        ≤Area (ABCD)_(cyclic)        =(√((s−a)(s−b)(s−c)(s−d)))              =(((s−a)^2 (s−b)^2 (s−c)^2 (s−d)^2 ))^(1/4)               ≤(((s−a)^2 +(s−b)^2 +(s−c)^2 +(s−d)^2 )/4)       =((4s^2 −2s(a+b+c+d)+a^2 +b^2 +c^2 +d^2 )/4)       =((4s^2 −4s^2 +a^2 +b^2 +c^2 +d^2 )/4)       =((a^2 +b^2 +c^2 +d^2 )/4) ✓

aquadrilateralwithsidesa,b,c,dhasthemaximumareawhenitiscyclic.thismaximumareais(sa)(ab)(sc)(sd)withs=a+b+c+d2.myproofseeQ30233.thatmeansArea(ABCD)arbitraryArea(ABCD)cyclic=(sa)(sb)(sc)(sd)=(sa)2(sb)2(sc)2(sd)24(sa)2+(sb)2+(sc)2+(sd)24=4s22s(a+b+c+d)+a2+b2+c2+d24=4s24s2+a2+b2+c2+d24=a2+b2+c2+d24

Answered by mr W last updated on 04/Mar/25

Area(ABCD)          =Δ(ABC)+Δ(CDA)          =((ab sin ∠B)/2)+((cd sin ∠D)/2)          ≤((ab)/2)+((cd)/2)         ≤((a^2 +b^2 )/4)+((c^2 +d^2 )/4)=((a^2 +b^2 +c^2 +d^2 )/4) ✓

Area(ABCD)=Δ(ABC)+Δ(CDA)=absinB2+cdsinD2ab2+cd2a2+b24+c2+d24=a2+b2+c2+d24

Commented by hardmath last updated on 03/Mar/25

cool dear professor thank you

cooldearprofessorthankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com