Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 217088 by alcohol last updated on 28/Feb/25

show that ∫_( n) ^( n + 1) ln(t) dt ≤ ln(n + (1/2))  Given u_n  = (((4n)^n n!e^(−n) )/((2n)!)), ∀n ≥ 1  prove, using the preceding question that  u_n  is decreasing and convergent

showthatnn+1ln(t)dtln(n+12)Givenun=(4n)nn!en(2n)!,n1prove,usingtheprecedingquestionthatunisdecreasingandconvergent

Answered by MrGaster last updated on 01/Mar/25

Prove:∫_n ^(n+1) ln(t)dt≤ln(n+(1/2))  ∫_n ^(n+1) ln(t)dt=[t ln(t)−t]_n ^(n+1)   =((n+1)+ln(n+1)−(n+1)−(n ln(n)−n)  =(n+1)ln(n+1)−n ln(n)−1  ln(n+1)≤ln(n)+(1/n) ⊢(n+1)ln(n+1)≤(n+1)(ln(n)+(1/n))  =(n+1)ln(n)+(n+1)(1/n)  =(n+1)ln(n)+1(1/n)  ∴(n+1)ln(n+1)−n ln(n)−1≤((n+1)ln(n)+1+(1/n))−n ln(n)−1  =ln(n)+(1/n)  ∵(1/n)≤ln(1+(1/(2n)))⇒ln(n)+(1/n)≤ln(n)+ln(1+(1/(2n)))  =ln(n(1+(1/(2n))))  =ln(n+(1/2))  so, determinant (((∫_n ^(n+1) ln(t)dt≤ln(n+(1/2)))))  Give u_n =(((4n)^n n!e^(−n) )/((2n)!)),∀n≥1,Prove that u_n is decreasing and converhgent.  Part 1:Prove u_n is decreasing.  Consider the ratio:  (u_(n+1) /u_n )=((((4(n+1)^(n+1) (n+1)!e^(−(n+1)) )/((2(n+1)!))/(((4n)^n e^(−n) )/((2n)!)))  =(((4(n+1))^(n+1) (n+1)e^(−1) )/((4n)^n (2n+2)(2n+1)))  =((4^(n+1) (n+1)^(n+1) (n+1)e^(−1) )/(4^n n^n (2n+2)(2n+1)))  =((4(n+1)^(n+2) e^(−1) )/(n^n 2(n+1)(2n+1)))  =((2(n+1)^(n+1) e^(−1) )/(n^n (2n+1)))  ∵(n+1)^(n+1) >n^(n+1) ⇒(((n+1)^(n−1) )/n^n )>1  ∴(u_(n+1) /u_n )<1 for large n,implying u_n is decreasing.  Step 2:Prove u_n is convergent.Using stirling′s approximation n!≈(√(2πn))((n/e))^n ⇒u_n =(((4n)^n n!e^(−n) )/((2n)!))≈(((4n)^n (√(2πn))((n/e))^n e^(−n) )/( (√(4πn))(((2n)/e))^(2n) ))  =(((4n)^n (√(2πn))n^n e^(−2n) )/( (√(4πn))2^(2n) n^(2n) ))  =(((√(2πn))4^n n^n e^(−2n) )/( (√(4πn))2^n n^(2n) ))  =(((√(2π))4^n e^(−2n) )/( (√(4π))2^(2n) n^n ))  =(((√2)2^(2n) e^(−2n) )/( (√2)2^(2n) n^n ))  =(e^(2n) /n^n )  As n→∞,e^(−2n) →0 and n^n →∞,so u_n →0.Thus,u_n is convergent.   determinant (((u_n is decreasing and convergent)))

Prove:nn+1ln(t)dtln(n+12)nn+1ln(t)dt=[tln(t)t]nn+1=((n+1)+ln(n+1)(n+1)(nln(n)n)=(n+1)ln(n+1)nln(n)1ln(n+1)ln(n)+1n(n+1)ln(n+1)(n+1)(ln(n)+1n)=(n+1)ln(n)+(n+1)1n=(n+1)ln(n)+11n(n+1)ln(n+1)nln(n)1((n+1)ln(n)+1+1n)nln(n)1=ln(n)+1n1nln(1+12n)ln(n)+1nln(n)+ln(1+12n)=ln(n(1+12n))=ln(n+12)so,nn+1ln(t)dtln(n+12)Giveun=(4n)nn!en(2n)!,n1,Provethatunisdecreasingandconverhgent.Part1:Proveunisdecreasing.Considertheratio:un+1un=(4(n+1)n+1(n+1)!e(n+1)(2(n+1)!(4n)nen(2n)!=(4(n+1))n+1(n+1)e1(4n)n(2n+2)(2n+1)=4n+1(n+1)n+1(n+1)e14nnn(2n+2)(2n+1)=4(n+1)n+2e1nn2(n+1)(2n+1)=2(n+1)n+1e1nn(2n+1)(n+1)n+1>nn+1(n+1)n1nn>1un+1un<1forlargen,implyingunisdecreasing.Step2:Proveunisconvergent.Usingstirlingsapproximationn!2πn(ne)nun=(4n)nn!en(2n)!(4n)n2πn(ne)nen4πn(2ne)2n=(4n)n2πnnne2n4πn22nn2n=2πn4nnne2n4πn2nn2n=2π4ne2n4π22nnn=222ne2n222nnn=e2nnnAsn,e2n0andnn,soun0.Thus,unisconvergent.unisdecreasingandconvergent

Terms of Service

Privacy Policy

Contact: info@tinkutara.com