All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 217088 by alcohol last updated on 28/Feb/25
showthat∫nn+1ln(t)dt⩽ln(n+12)Givenun=(4n)nn!e−n(2n)!,∀n⩾1prove,usingtheprecedingquestionthatunisdecreasingandconvergent
Answered by MrGaster last updated on 01/Mar/25
Prove:∫nn+1ln(t)dt≤ln(n+12)∫nn+1ln(t)dt=[tln(t)−t]nn+1=((n+1)+ln(n+1)−(n+1)−(nln(n)−n)=(n+1)ln(n+1)−nln(n)−1ln(n+1)≤ln(n)+1n⊢(n+1)ln(n+1)≤(n+1)(ln(n)+1n)=(n+1)ln(n)+(n+1)1n=(n+1)ln(n)+11n∴(n+1)ln(n+1)−nln(n)−1≤((n+1)ln(n)+1+1n)−nln(n)−1=ln(n)+1n∵1n≤ln(1+12n)⇒ln(n)+1n≤ln(n)+ln(1+12n)=ln(n(1+12n))=ln(n+12)so,∫nn+1ln(t)dt≤ln(n+12)Giveun=(4n)nn!e−n(2n)!,∀n≥1,Provethatunisdecreasingandconverhgent.Part1:Proveunisdecreasing.Considertheratio:un+1un=(4(n+1)n+1(n+1)!e−(n+1)(2(n+1)!(4n)ne−n(2n)!=(4(n+1))n+1(n+1)e−1(4n)n(2n+2)(2n+1)=4n+1(n+1)n+1(n+1)e−14nnn(2n+2)(2n+1)=4(n+1)n+2e−1nn2(n+1)(2n+1)=2(n+1)n+1e−1nn(2n+1)∵(n+1)n+1>nn+1⇒(n+1)n−1nn>1∴un+1un<1forlargen,implyingunisdecreasing.Step2:Proveunisconvergent.Usingstirling′sapproximationn!≈2πn(ne)n⇒un=(4n)nn!e−n(2n)!≈(4n)n2πn(ne)ne−n4πn(2ne)2n=(4n)n2πnnne−2n4πn22nn2n=2πn4nnne−2n4πn2nn2n=2π4ne−2n4π22nnn=222ne−2n222nnn=e2nnnAsn→∞,e−2n→0andnn→∞,soun→0.Thus,unisconvergent.unisdecreasingandconvergent
Terms of Service
Privacy Policy
Contact: info@tinkutara.com