Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 21713 by Tinkutara last updated on 01/Oct/17

A constant force F = 20 N acts on a  block of mass 2 kg which is connected to  two blocks of masses m_1  = 1 kg and  m_2  = 2 kg. Calculate the accelerations  produced in all the three blocks. Assume  pulleys are frictionless and weightless.

$$\mathrm{A}\:\mathrm{constant}\:\mathrm{force}\:{F}\:=\:\mathrm{20}\:\mathrm{N}\:\mathrm{acts}\:\mathrm{on}\:\mathrm{a} \\ $$$$\mathrm{block}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{2}\:\mathrm{kg}\:\mathrm{which}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to} \\ $$$$\mathrm{two}\:\mathrm{blocks}\:\mathrm{of}\:\mathrm{masses}\:{m}_{\mathrm{1}} \:=\:\mathrm{1}\:\mathrm{kg}\:\mathrm{and} \\ $$$${m}_{\mathrm{2}} \:=\:\mathrm{2}\:\mathrm{kg}.\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{accelerations} \\ $$$$\mathrm{produced}\:\mathrm{in}\:\mathrm{all}\:\mathrm{the}\:\mathrm{three}\:\mathrm{blocks}.\:\mathrm{Assume} \\ $$$$\mathrm{pulleys}\:\mathrm{are}\:\mathrm{frictionless}\:\mathrm{and}\:\mathrm{weightless}. \\ $$

Commented by Tinkutara last updated on 01/Oct/17

Commented by mrW1 last updated on 01/Oct/17

F−T=Ma  2T−m_1 g=m_1 a_1   T−m_2 g=m_2 a_2   a_1 =(1/2)(a−a_2 )    T=F−M  2(F−Ma)=m_1 (g+a_1 )  ⇒a_1 =((2(F−Ma))/m_1 )−g  F−Ma=m_2 (g+a_2 )  ⇒a_2 =((F−Ma)/m_2 )−g  ((4(F−Ma))/m_1 )−2g=a−((F−Ma)/m_2 )+g  ((4F)/m_1 )+(F/m_2 )−3g=(1+((4M)/m_1 )+(M/m_2 ))a  ⇒a=(((m_1 +4m_2 )F−3m_1 m_2 g)/((m_1 +4m_2 )M+m_1 m_2 ))  =(((1+4×2)×20−3×1×2×9.8)/((1+4×2)×2+1×2))  =((180−6×9.8)/(20))  =6.06 m/s^2  (←)  ⇒a_1 =((2(20−2×6.06))/1)−9.8=5.96 m/s^2  (↑)  ⇒a_2 =((20−2×6.06)/2)−9.8=−5.86 m/s^2  (↓)

$$\mathrm{F}−\mathrm{T}=\mathrm{Ma} \\ $$$$\mathrm{2T}−\mathrm{m}_{\mathrm{1}} \mathrm{g}=\mathrm{m}_{\mathrm{1}} \mathrm{a}_{\mathrm{1}} \\ $$$$\mathrm{T}−\mathrm{m}_{\mathrm{2}} \mathrm{g}=\mathrm{m}_{\mathrm{2}} \mathrm{a}_{\mathrm{2}} \\ $$$$\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}−\mathrm{a}_{\mathrm{2}} \right) \\ $$$$ \\ $$$$\mathrm{T}=\mathrm{F}−\mathrm{M} \\ $$$$\mathrm{2}\left(\mathrm{F}−\mathrm{Ma}\right)=\mathrm{m}_{\mathrm{1}} \left(\mathrm{g}+\mathrm{a}_{\mathrm{1}} \right) \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{2}\left(\mathrm{F}−\mathrm{Ma}\right)}{\mathrm{m}_{\mathrm{1}} }−\mathrm{g} \\ $$$$\mathrm{F}−\mathrm{Ma}=\mathrm{m}_{\mathrm{2}} \left(\mathrm{g}+\mathrm{a}_{\mathrm{2}} \right) \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{2}} =\frac{\mathrm{F}−\mathrm{Ma}}{\mathrm{m}_{\mathrm{2}} }−\mathrm{g} \\ $$$$\frac{\mathrm{4}\left(\mathrm{F}−\mathrm{Ma}\right)}{\mathrm{m}_{\mathrm{1}} }−\mathrm{2g}=\mathrm{a}−\frac{\mathrm{F}−\mathrm{Ma}}{\mathrm{m}_{\mathrm{2}} }+\mathrm{g} \\ $$$$\frac{\mathrm{4F}}{\mathrm{m}_{\mathrm{1}} }+\frac{\mathrm{F}}{\mathrm{m}_{\mathrm{2}} }−\mathrm{3g}=\left(\mathrm{1}+\frac{\mathrm{4M}}{\mathrm{m}_{\mathrm{1}} }+\frac{\mathrm{M}}{\mathrm{m}_{\mathrm{2}} }\right)\mathrm{a} \\ $$$$\Rightarrow\mathrm{a}=\frac{\left(\mathrm{m}_{\mathrm{1}} +\mathrm{4m}_{\mathrm{2}} \right)\mathrm{F}−\mathrm{3m}_{\mathrm{1}} \mathrm{m}_{\mathrm{2}} \mathrm{g}}{\left(\mathrm{m}_{\mathrm{1}} +\mathrm{4m}_{\mathrm{2}} \right)\mathrm{M}+\mathrm{m}_{\mathrm{1}} \mathrm{m}_{\mathrm{2}} } \\ $$$$=\frac{\left(\mathrm{1}+\mathrm{4}×\mathrm{2}\right)×\mathrm{20}−\mathrm{3}×\mathrm{1}×\mathrm{2}×\mathrm{9}.\mathrm{8}}{\left(\mathrm{1}+\mathrm{4}×\mathrm{2}\right)×\mathrm{2}+\mathrm{1}×\mathrm{2}} \\ $$$$=\frac{\mathrm{180}−\mathrm{6}×\mathrm{9}.\mathrm{8}}{\mathrm{20}} \\ $$$$=\mathrm{6}.\mathrm{06}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\left(\leftarrow\right) \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{2}\left(\mathrm{20}−\mathrm{2}×\mathrm{6}.\mathrm{06}\right)}{\mathrm{1}}−\mathrm{9}.\mathrm{8}=\mathrm{5}.\mathrm{96}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\left(\uparrow\right) \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{2}} =\frac{\mathrm{20}−\mathrm{2}×\mathrm{6}.\mathrm{06}}{\mathrm{2}}−\mathrm{9}.\mathrm{8}=−\mathrm{5}.\mathrm{86}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\left(\downarrow\right) \\ $$

Commented by Tinkutara last updated on 01/Oct/17

I don′t think all blocks have same  accelerations. If you take g = 9.8 m/s^2 ,  then I can check your answer from book.

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{all}\:\mathrm{blocks}\:\mathrm{have}\:\mathrm{same} \\ $$$$\mathrm{accelerations}.\:\mathrm{If}\:\mathrm{you}\:\mathrm{take}\:{g}\:=\:\mathrm{9}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} , \\ $$$$\mathrm{then}\:\mathrm{I}\:\mathrm{can}\:\mathrm{check}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{from}\:\mathrm{book}. \\ $$

Commented by mrW1 last updated on 02/Oct/17

they have the same value of acceleration  just because of these specific parameters.

$$\mathrm{they}\:\mathrm{have}\:\mathrm{the}\:\mathrm{same}\:\mathrm{value}\:\mathrm{of}\:\mathrm{acceleration} \\ $$$$\mathrm{just}\:\mathrm{because}\:\mathrm{of}\:\mathrm{these}\:\mathrm{specific}\:\mathrm{parameters}. \\ $$

Commented by Tinkutara last updated on 02/Oct/17

Can you explain why a_1 =(1/2)(a−a_2 )?

$$\mathrm{Can}\:\mathrm{you}\:\mathrm{explain}\:\mathrm{why}\:\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}−\mathrm{a}_{\mathrm{2}} \right)? \\ $$

Commented by mrW1 last updated on 02/Oct/17

since the rope is inextensible, the  motion of mass m_1  is dependent from  the motion of the other two masses.  position of mass M =x (+ve if ←)  position of mass m_2  =x_2  (+ve if ↑)  position of mass m_1  =x_1  (+ve if ↑)  we get x_1 =(x/2)−(x_2 /2)  a=(d^2 x/dt^2 )  a_1 =(d^2 x_1 /dt^2 )  a_2 =(d^2 x_2 /dt^2 )  ⇒a_1 =(1/2)(a−a_2 )

$$\mathrm{since}\:\mathrm{the}\:\mathrm{rope}\:\mathrm{is}\:\mathrm{inextensible},\:\mathrm{the} \\ $$$$\mathrm{motion}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}_{\mathrm{1}} \:\mathrm{is}\:\mathrm{dependent}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{motion}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two}\:\mathrm{masses}. \\ $$$$\mathrm{position}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{M}\:=\mathrm{x}\:\left(+\mathrm{ve}\:\mathrm{if}\:\leftarrow\right) \\ $$$$\mathrm{position}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}_{\mathrm{2}} \:=\mathrm{x}_{\mathrm{2}} \:\left(+\mathrm{ve}\:\mathrm{if}\:\uparrow\right) \\ $$$$\mathrm{position}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{m}_{\mathrm{1}} \:=\mathrm{x}_{\mathrm{1}} \:\left(+\mathrm{ve}\:\mathrm{if}\:\uparrow\right) \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{x}}{\mathrm{2}}−\frac{\mathrm{x}_{\mathrm{2}} }{\mathrm{2}} \\ $$$$\mathrm{a}=\frac{\mathrm{d}^{\mathrm{2}} \mathrm{x}}{\mathrm{dt}^{\mathrm{2}} } \\ $$$$\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{d}^{\mathrm{2}} \mathrm{x}_{\mathrm{1}} }{\mathrm{dt}^{\mathrm{2}} } \\ $$$$\mathrm{a}_{\mathrm{2}} =\frac{\mathrm{d}^{\mathrm{2}} \mathrm{x}_{\mathrm{2}} }{\mathrm{dt}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{a}−\mathrm{a}_{\mathrm{2}} \right) \\ $$

Commented by Tinkutara last updated on 02/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com