All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 217211 by Ghisom last updated on 06/Mar/25
aniceone:prove∫10−lnttdt=2π
Answered by MrGaster last updated on 06/Mar/25
(1):∫01−lnttdt=∫01t−12(−lnt)12dt=∫0∞e−uu−12(u2)12duu(lett=e−u)=12∫0∞e−uu12−1du=12Γ(12)=12π=π2π2=π2=2π(2)Letu=−lnt⇒t=e−u2⇒dt=−2ue−u2du∫01−lnttdt=∫0∞u2⋅(−2ue−u2)du=2∫0∞u2e−u2du∫0∞e−u2du=π2∫0∞u2e−u2du=12∫0∞u⋅(2ue−u2)du=12[−e−u2]0∞=12⇒2∫0∞u2e−u2du2⋅12=1∴∫01−lnttdt=2π
Commented by Ghisom last updated on 06/Mar/25
��
Terms of Service
Privacy Policy
Contact: info@tinkutara.com