Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 217211 by Ghisom last updated on 06/Mar/25

a nice one:  prove     ∫_0 ^1 (√(−((ln t)/t))) dt=(√(2π))

aniceone:prove10lnttdt=2π

Answered by MrGaster last updated on 06/Mar/25

(1):∫_0 ^1 (√(−((ln t)/t)))dt=∫_0 ^1 t^(−(1/2)) (−ln t)^(1/2) dt  =∫_0 ^∞ e^(−u) u^(−(1/2)) ((u/2))^(1/2) (du/u) (let t=e^(−u) )  =(1/( (√2)))∫_0 ^∞ e^(−u) u^((1/2)−1) du  =(1/( (√2)))Γ((1/2))  =(1/( (√2)))(√π)  =(√(π/2))  (√(π/2))=((√π)/( (√2))) =(√(2π))  (2)Let u=(√(−ln t))⇒t=e^(−u^2 ) ⇒dt=−2ue^(−u^2 ) du  ∫_0 ^1 (√(−((ln t)/t)))dt=∫_0 ^∞ (√u^2 )∙(−2ue^(−u^2 ) )du=2∫_0 ^∞ u^2 e^(−u^2 ) du  ∫_0 ^∞ e^(−u^2 ) du=((√π)/2)  ∫_0 ^∞ u^2 e^(−u^2 ) du=(1/2)∫_0 ^∞ u∙(2ue^(−u^2 ) )du=(1/2)[−e^(−u^2 ) ]_0 ^∞ =(1/2)  ⇒2∫_0 ^∞ u^2 e^(−u^2 ) du2∙(1/2)=1  ∴∫_0 ^1 (√(−((ln t)/t)))dt=(√(2π))

(1):01lnttdt=01t12(lnt)12dt=0euu12(u2)12duu(lett=eu)=120euu121du=12Γ(12)=12π=π2π2=π2=2π(2)Letu=lntt=eu2dt=2ueu2du01lnttdt=0u2(2ueu2)du=20u2eu2du0eu2du=π20u2eu2du=120u(2ueu2)du=12[eu2]0=1220u2eu2du212=101lnttdt=2π

Commented by Ghisom last updated on 06/Mar/25

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com