All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 217219 by mnjuly1970 last updated on 06/Mar/25
calculateL(∫1∞e−txxdx)=laplacetransfom?;t>0
Answered by Wuji last updated on 06/Mar/25
f(t)=∫∞1e−txxdx,t>0u=tx⇒dx=1tdu;x=utf(t)=∫t∞e−uut∙1tdu=∫t∞e−uudu=E1(t)f(t)=E1(t)L{f}(s)=∫0∞e−stE1(t)L{f}(s)=∫∞0e−st[∫∞0e−txxdx]dt=∫∞11x[∫∞0e−t(s+x)dt]dx∫∞0e−t(s+x)dt=1s+x{∀R(s+x)>0}L{f}(s)=∫1∞1x(s+x)dx1x(s+x)=1s(1x−1s+x)L{f}(s)=1s∫∞11xdx−∫∞11s+xdx∫R11xdx=ln(R);∫1R2s+xdx=∫s+Rs+11udu=ln(s+R)−ln(s+1)∫R11xdx−∫R11s+xdx=ln(R)−[ln(s+R)−ln(s+1)]=ln(R(s+1)(s+R))R(s+1)(s+R)→s+1ln(s+1)∴L{f}(s)=1sln(s+1)f(t)=∫∞0e−txxdt=1sln(s+1)
Commented by mnjuly1970 last updated on 06/Mar/25
―
Terms of Service
Privacy Policy
Contact: info@tinkutara.com