Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 21722 by mondodotto@gmail.com last updated on 02/Oct/17

Answered by mrW1 last updated on 02/Oct/17

cos^2  x+3sin 2x=2  2cos^2  x+6sin 2x=4  2cos^2  x−1+6sin 2x=3  cos 2x+6sin 2x=3  (1/(√(37)))cos 2x+(6/(√(37)))sin 2x=(3/(√(37)))  cos α cos 2x+sin α sin 2x=(3/(√(37)))  with α=cos^(−1) (1/(√(37)))  cos (2x−α)=(3/(√(37)))  ⇒2x−α=2nπ±cos^(−1) (3/(√(37)))  ⇒x=nπ+(1/2)(α±cos^(−1) (3/(√(37))))  ⇒x=nπ+(1/2)(cos^(−1) (1/(√(37)))±cos^(−1) (3/(√(37))))    in range [0,2π]  x=(1/2)(cos^(−1) (1/(√(37)))−cos^(−1) (3/(√(37))))≈10.04°  x=(1/2)(cos^(−1) (1/(√(37)))+cos^(−1) (3/(√(37))))≈70.49°  x=π+(1/2)(cos^(−1) (1/(√(37)))−cos^(−1) (3/(√(37))))≈190.04°  x=π+(1/2)(cos^(−1) (1/(√(37)))+cos^(−1) (3/(√(37))))≈250.49°

cos2x+3sin2x=22cos2x+6sin2x=42cos2x1+6sin2x=3cos2x+6sin2x=3137cos2x+637sin2x=337cosαcos2x+sinαsin2x=337withα=cos1137cos(2xα)=3372xα=2nπ±cos1337x=nπ+12(α±cos1337)x=nπ+12(cos1137±cos1337)inrange[0,2π]x=12(cos1137cos1337)10.04°x=12(cos1137+cos1337)70.49°x=π+12(cos1137cos1337)190.04°x=π+12(cos1137+cos1337)250.49°

Commented by mondodotto@gmail.com last updated on 02/Oct/17

me too didn′t undstnd where (√(37)) come from

metoodidntundstndwhere37comefrom

Commented by mrW1 last updated on 02/Oct/17

1, 6 ⇒ (√(1^2 +6^2 ))=(√(37))  ⇒cos α=(1/(√(37))) and sin α=(6/(√(37)))  since cos^2  α+sin^2  α=1

1,612+62=37cosα=137andsinα=637sincecos2α+sin2α=1

Commented by Joel577 last updated on 02/Oct/17

understood. thanks

understood.thanks

Commented by Joel577 last updated on 02/Oct/17

Line 5  Why both L.H.S and R.H.S divided by (√(37))  Where did u get (√(37)) ?

Line5WhybothL.H.SandR.H.Sdividedby37Wherediduget37?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com