Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 217252 by mr W last updated on 07/Mar/25

Commented by mr W last updated on 07/Mar/25

As Q217238, but the other end of  the string is connected with a block  with mass m which can slide on the  table frictionlessly.  find the accelerations of the objects  and the tension in string.

AsQ217238,buttheotherendofthestringisconnectedwithablockwithmassmwhichcanslideonthetablefrictionlessly.findtheaccelerationsoftheobjectsandthetensioninstring.

Commented by Tawa11 last updated on 07/Mar/25

a = ((Mg)/(M + m))  T = ((Mmg)/(M + m))  Sir.

a=MgM+mT=MmgM+mSir.

Commented by mr W last updated on 07/Mar/25

how?

how?

Commented by Tawa11 last updated on 07/Mar/25

Is it correct sir?

Isitcorrectsir?

Commented by mr W last updated on 07/Mar/25

no!

no!

Answered by mahdipoor last updated on 07/Mar/25

T=mA=mx^(..)    { ((F=ma^−  ⇒ −T+Mg=Ma=My^(..) )),((ΣM_(CM) =I^− α ⇒TR=Iθ^(..) )) :}  y−θR=x ⇒ a−θ^(..) R=A   ⇒⇒  T=m(a−θ^(..) R)=m((g−(T/M))−(((TR)/((MR^2 )/2)))R)  ⇒T=((Mmg)/(M+3m))=cte  ⇒A=(T/m)  ⇒a=g−(T/M)=g−(m/M)A

T=mA=mx..{F=maT+Mg=Ma=My..ΣMCM=IαTR=Iθ..yθR=xaθ..R=A⇒⇒T=m(aθ..R)=m((gTM)(TRMR22)R)T=MmgM+3m=cteA=Tma=gTM=gmMA

Commented by mr W last updated on 07/Mar/25

��

Commented by Tawa11 last updated on 08/Mar/25

Thanks sir.

Thankssir.

Answered by aleks041103 last updated on 07/Mar/25

mA=T  Ma=Mg−T  ((1/2)MR^2 )ε=TR⇒T=(1/2)MεR  εR=a−A  ⇒T=(1/2)M(a−A)    mA=(1/2)M(a−A)⇒Ma=(2m+M)A⇒a=(1+((2m)/M))A  Ma+mA=Mg  ⇒(3m+M)A=Mg  ⇒A = (M/(3m+M)) g   and    a = ((2m+M)/(3m+M)) g

mA=TMa=MgT(12MR2)ε=TRT=12MεRεR=aAT=12M(aA)mA=12M(aA)Ma=(2m+M)Aa=(1+2mM)AMa+mA=Mg(3m+M)A=MgA=M3m+Mganda=2m+M3m+Mg

Commented by mr W last updated on 07/Mar/25

��

Commented by Tawa11 last updated on 08/Mar/25

Thanks sir

Thankssir

Answered by mr W last updated on 08/Mar/25

α=angular acceleration of cylinder ( ↶)  a=acceleration of cylinder  (↓)  A=acceleration of block on table  (←)  we have:  a=αR+A  I=((MR^2 )/2)  αI=TR  ((αMR^2 )/2)=TR  ⇒T=((αMR)/2)  Ma=Mg−T  M(αR+A)=Mg−T  ⇒T=M(g−αR−A)  T=mA  ((αMR)/2)=M(g−αR−A)  ⇒A=g−((3αR)/2)  mA=((αMR)/2)  m(g−((3αR)/2))=((αMR)/2)  ⇒α=((2g)/(R(3+(M/m))))  ⇒A=g−((3R)/2)×((2g)/(R(3+(M/m))))=(g/(1+((3m)/M)))  ⇒a=((2gR)/(R(3+(M/m))))+g(1−(3/(3+(M/m))))=(((1+((2m)/M))g)/(1+((3m)/M)))  ⇒T=mg(1−(3/(3+(M/m))))=((Mg)/(3+(M/m)))    if m→0:  (→free fall)  α→0  a→g, A→g  T→0    if m→∞:  (→ case in Q217238)  α→((2g)/(3R))  a→((2g)/3), A→0  T→((Mg)/3)

α=angularaccelerationofcylinder()a=accelerationofcylinder()A=accelerationofblockontable()wehave:a=αR+AI=MR22αI=TRαMR22=TRT=αMR2Ma=MgTM(αR+A)=MgTT=M(gαRA)T=mAαMR2=M(gαRA)A=g3αR2mA=αMR2m(g3αR2)=αMR2α=2gR(3+Mm)A=g3R2×2gR(3+Mm)=g1+3mMa=2gRR(3+Mm)+g(133+Mm)=(1+2mM)g1+3mMT=mg(133+Mm)=Mg3+Mmifm0:(freefall)α0ag,AgT0ifm:(caseinQ217238)α2g3Ra2g3,A0TMg3

Commented by Tawa11 last updated on 08/Mar/25

Thanks sir.

Thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com