Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 217389 by Simurdiera last updated on 12/Mar/25

Resolver  ((∣x − 1∣ + ∣x + 2∣)/(∣x∣ − 1)) ≤ 3

Resolverx1+x+2x13

Answered by A5T last updated on 13/Mar/25

when −2≤x<−1; ∣x−1∣=1−x, ∣x+2∣=x+2∧ ∣x∣=−x  ⇒((∣x−1∣+∣x+2∣)/(∣x∣−1))≤3⇒((1−x+x+2)/(−x−1))≤3  ⇒3≤−3x−3⇒x≤−2 but −2≤x<−1⇒ x=−2  when −1<x<0  ⇒∣x∣=−x, ∣x−1∣=1−x and ∣x+2∣=x+2  ⇒((∣x−1∣+∣x+2∣)/(∣x∣−1))≤3⇒((1−x+x+2)/(−x−1))≤3  −x−1<0⇒3≥3(−x−1)⇒2≥−x  ⇒x≥−2 but −1<x<0 ⇒ x∈ (−1,0)  x=0 makes it true  when 0<x<1; ∣x−1∣=1−x, ∣x+2∣=x+2 ∧ ∣x∣=x  ⇒((∣x−1∣+∣x+2∣)/(∣x∣−1))≤3⇒((1−x+x+2)/(x−1))≤3  x−1<0⇒3≥3(x−1)  ⇒x≤1 but 0<x<1⇒ x∈(0,1)  when x>1; ∣x−1∣=x−1, ∣x+2∣=x+2 ∧ ∣x∣=x  ⇒((∣x−1∣+∣x+2∣)/(∣x∣−1))≤3⇒((x−1+x+2)/(x−1))≤3  ⇒2x+1≤3x−3  ⇒x≥4 but x>1 ⇒x∈ [4,∞)  when x<−2; ∣x−1∣=1−x, ∣x+2∣=−x−2 ∧ ∣x∣=−x  ⇒((∣x−1∣+∣x+2∣)/(∣x∣−1))≤3⇒ ((1−x−x−2)/(−x−1))≤3  ⇒−2x−1≤−3x−3  ⇒x≤−2 but x<−2 ⇒ x∈ (−∞,−2)  ⇒ x ∈ (−∞,−2] ∪ (−1,1) ∪ [4,∞)

when2x<1;x1∣=1x,x+2∣=x+2x∣=xx1+x+2x131x+x+2x1333x3x2but2x<1x=2when1<x<0⇒∣x∣=x,x1∣=1xandx+2∣=x+2x1+x+2x131x+x+2x13x1<033(x1)2xx2but1<x<0x(1,0)x=0makesittruewhen0<x<1;x1∣=1x,x+2∣=x+2x∣=xx1+x+2x131x+x+2x13x1<033(x1)x1but0<x<1x(0,1)whenx>1;x1∣=x1,x+2∣=x+2x∣=xx1+x+2x13x1+x+2x132x+13x3x4butx>1x[4,)whenx<2;x1∣=1x,x+2∣=x2x∣=xx1+x+2x131xx2x132x13x3x2butx<2x(,2)x(,2](1,1)[4,)

Commented by Simurdiera last updated on 12/Mar/25

Gracias ⋛

Gracias

Commented by Hanuda354 last updated on 13/Mar/25

   x ∈ (−∞,−2] ∪ (−1,1) ∪ [4,∞)

x(,2](1,1)[4,)

Answered by mehdee7396 last updated on 12/Mar/25

x=0,1,−2  if   x≤−2  (1) ⇒((−x+1−x−2)/(−x−1))−3≤0  ((x+2)/(−x−1))≤0⇒x≤−2  or  x>−1  (2)  (1)∩(2)⇒x≤−2  (i)  if   −2≤x≤0  (1) ⇒((−x+1+x+2)/(−x−1))−3≤0  ((3x+6)/(−x−1))≤0⇒x≤−2  or  x>−1  (2)  (1)∩(2)⇒x∈{−2}∪ (−1,0]  (ii)  if   0≤x<1  (1) ⇒((−x+1+x+2)/(x−1))−3≤0  ((−3x+6)/(x−1))≤0⇒x<1 or  x≥2  (2)  (1)∩(2)⇒0≤x<1 (iii)  if   1<x  (1) ⇒((x−1+x+2)/(x−1))−3≤0  ((−x+4)/(x−1))≤0⇒x<1 or  x≥4  (2)  (1)∩(2)⇒x=1 or x≥4  (iv)  (i)∪(ii)∪(iii)∪(iv)=(−∞,−2]∪(−1,1)∪[4,∞)

x=0,1,2ifx2(1)x+1x2x130x+2x10x2orx>1(2)(1)(2)x2(i)if2x0(1)x+1+x+2x1303x+6x10x2orx>1(2)(1)(2)x{2}(1,0](ii)if0x<1(1)x+1+x+2x1303x+6x10x<1orx2(2)(1)(2)0x<1(iii)if1<x(1)x1+x+2x130x+4x10x<1orx4(2)(1)(2)x=1orx4(iv)(i)(ii)(iii)(iv)=(,2](1,1)[4,)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com