Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 21793 by Tinkutara last updated on 04/Oct/17

A plank of mass 10 kg rests on a smooth  horizontal surface. Two blocks A and  B of masses m_A  = 2 kg and m_B  = 1 kg  lies at a distance of 3 m on the plank.  The friction coefficient between the  blocks and plank are μ_A  = 0.3 and μ_B  =  0.1. Now a force F = 15 N is applied to  the plank in horizontal direction. Find  the times (in sec) after which block A  collides with B.

$$\mathrm{A}\:\mathrm{plank}\:\mathrm{of}\:\mathrm{mass}\:\mathrm{10}\:\mathrm{kg}\:\mathrm{rests}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}.\:\mathrm{Two}\:\mathrm{blocks}\:\mathrm{A}\:\mathrm{and} \\ $$$$\mathrm{B}\:\mathrm{of}\:\mathrm{masses}\:\mathrm{m}_{\mathrm{A}} \:=\:\mathrm{2}\:\mathrm{kg}\:\mathrm{and}\:\mathrm{m}_{\mathrm{B}} \:=\:\mathrm{1}\:\mathrm{kg} \\ $$$$\mathrm{lies}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance}\:\mathrm{of}\:\mathrm{3}\:\mathrm{m}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plank}. \\ $$$$\mathrm{The}\:\mathrm{friction}\:\mathrm{coefficient}\:\mathrm{between}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{and}\:\mathrm{plank}\:\mathrm{are}\:\mu_{\mathrm{A}} \:=\:\mathrm{0}.\mathrm{3}\:\mathrm{and}\:\mu_{\mathrm{B}} \:= \\ $$$$\mathrm{0}.\mathrm{1}.\:\mathrm{Now}\:\mathrm{a}\:\mathrm{force}\:\mathrm{F}\:=\:\mathrm{15}\:\mathrm{N}\:\mathrm{is}\:\mathrm{applied}\:\mathrm{to} \\ $$$$\mathrm{the}\:\mathrm{plank}\:\mathrm{in}\:\mathrm{horizontal}\:\mathrm{direction}.\:\mathrm{Find} \\ $$$$\mathrm{the}\:\mathrm{times}\:\left(\mathrm{in}\:\mathrm{sec}\right)\:\mathrm{after}\:\mathrm{which}\:\mathrm{block}\:\mathrm{A} \\ $$$$\mathrm{collides}\:\mathrm{with}\:\mathrm{B}. \\ $$

Commented by Tinkutara last updated on 04/Oct/17

Commented by mrW1 last updated on 04/Oct/17

a_A =((μ_A m_A g)/m_A )=μ_A g  a_B =((μ_B m_B g)/m_B )=μ_B g < a_A   Δa=a_A −a_B =(μ_A −μ_B )g  Δs=(1/2)Δat^2   ⇒t=(√((2Δs)/(Δa)))=(√((2Δs)/((μ_A −μ_B )g)))  =(√((2×3)/((0.3−0.1)×10)))  =(√3)  ≈1.73 s    F−μ_A m_A g−μ_B m_B g=Ma  ⇒a=((F−(μ_A m_A +μ_B m_B )g)/M)  =((15−(0.3×2+0.1×1)×10)/(10))  =0.8 m/s^2

$$\mathrm{a}_{\mathrm{A}} =\frac{\mu_{\mathrm{A}} \mathrm{m}_{\mathrm{A}} \mathrm{g}}{\mathrm{m}_{\mathrm{A}} }=\mu_{\mathrm{A}} \mathrm{g} \\ $$$$\mathrm{a}_{\mathrm{B}} =\frac{\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}}{\mathrm{m}_{\mathrm{B}} }=\mu_{\mathrm{B}} \mathrm{g}\:<\:\mathrm{a}_{\mathrm{A}} \\ $$$$\Delta\mathrm{a}=\mathrm{a}_{\mathrm{A}} −\mathrm{a}_{\mathrm{B}} =\left(\mu_{\mathrm{A}} −\mu_{\mathrm{B}} \right)\mathrm{g} \\ $$$$\Delta\mathrm{s}=\frac{\mathrm{1}}{\mathrm{2}}\Delta\mathrm{at}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{t}=\sqrt{\frac{\mathrm{2}\Delta\mathrm{s}}{\Delta\mathrm{a}}}=\sqrt{\frac{\mathrm{2}\Delta\mathrm{s}}{\left(\mu_{\mathrm{A}} −\mu_{\mathrm{B}} \right)\mathrm{g}}} \\ $$$$=\sqrt{\frac{\mathrm{2}×\mathrm{3}}{\left(\mathrm{0}.\mathrm{3}−\mathrm{0}.\mathrm{1}\right)×\mathrm{10}}} \\ $$$$=\sqrt{\mathrm{3}} \\ $$$$\approx\mathrm{1}.\mathrm{73}\:\mathrm{s} \\ $$$$ \\ $$$$\mathrm{F}−\mu_{\mathrm{A}} \mathrm{m}_{\mathrm{A}} \mathrm{g}−\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}=\mathrm{Ma} \\ $$$$\Rightarrow\mathrm{a}=\frac{\mathrm{F}−\left(\mu_{\mathrm{A}} \mathrm{m}_{\mathrm{A}} +\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \right)\mathrm{g}}{\mathrm{M}} \\ $$$$=\frac{\mathrm{15}−\left(\mathrm{0}.\mathrm{3}×\mathrm{2}+\mathrm{0}.\mathrm{1}×\mathrm{1}\right)×\mathrm{10}}{\mathrm{10}} \\ $$$$=\mathrm{0}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \\ $$

Commented by mrW1 last updated on 05/Oct/17

I know the answer was wrong, since  a=0.8 m/s^2  which is less than a_A  and  a_B . that means the plank moves more  slowly than A and B, but this is  contradiction.    therefore I made following consideration:

$$\mathrm{I}\:\mathrm{know}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{was}\:\mathrm{wrong},\:\mathrm{since} \\ $$$$\mathrm{a}=\mathrm{0}.\mathrm{8}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{less}\:\mathrm{than}\:\mathrm{a}_{\mathrm{A}} \:\mathrm{and} \\ $$$$\mathrm{a}_{\mathrm{B}} .\:\mathrm{that}\:\mathrm{means}\:\mathrm{the}\:\mathrm{plank}\:\mathrm{moves}\:\mathrm{more} \\ $$$$\mathrm{slowly}\:\mathrm{than}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B},\:\mathrm{but}\:\mathrm{this}\:\mathrm{is} \\ $$$$\mathrm{contradiction}. \\ $$$$ \\ $$$$\mathrm{therefore}\:\mathrm{I}\:\mathrm{made}\:\mathrm{following}\:\mathrm{consideration}: \\ $$

Commented by mrW1 last updated on 05/Oct/17

case 1: only block B slides on plank  R_B =μ_B m_B g=m_B a_B   ⇒a_B =μ_B g=0.1×10=1  a_A =a  F−R_B =(M+m_A )a  ⇒a=((F−μ_B m_B g)/(M+m_A ))=((15−0.1×1×10)/(10+2))=(7/6)>a_B =1  R_A =m_A a=2×(7/6)=(7/3)≈2.33 N  μ_A m_A g=0.3×2×10=6 N > R_A   ⇒block A doesn′t slide, ok!    Δa=a_A −a_B =(7/6)−1=(1/6) m/s^2   t=(√((2Δs)/(Δa)))=(√((2×3)/(1/6)))=6 s  ⇒after 6 seconds A meets B.    case 2: both blocks slide on plank  impossible, as shown above    case 3: none of the blocks slides on plank  a_A =a_B =a  F=(M+m_A +m_B )a  ⇒a=(F/(M+m_A +m_B ))=((15)/(10+2+1))=((15)/(13)) m/s^2   R_B =m_B a=1×((15)/(13))≈1.15 N  μ_B m_B g=0.1×1×10=1 N < R_B   ⇒block B muss slide!    ⇒the answer is that only block B slides  on plank. block A keeps in rest on  plank. after 6 sec block A meets B.

$$\mathrm{case}\:\mathrm{1}:\:\mathrm{only}\:\mathrm{block}\:\mathrm{B}\:\mathrm{slides}\:\mathrm{on}\:\mathrm{plank} \\ $$$$\mathrm{R}_{\mathrm{B}} =\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}=\mathrm{m}_{\mathrm{B}} \mathrm{a}_{\mathrm{B}} \\ $$$$\Rightarrow\mathrm{a}_{\mathrm{B}} =\mu_{\mathrm{B}} \mathrm{g}=\mathrm{0}.\mathrm{1}×\mathrm{10}=\mathrm{1} \\ $$$$\mathrm{a}_{\mathrm{A}} =\mathrm{a} \\ $$$$\mathrm{F}−\mathrm{R}_{\mathrm{B}} =\left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} \right)\mathrm{a} \\ $$$$\Rightarrow\mathrm{a}=\frac{\mathrm{F}−\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}}{\mathrm{M}+\mathrm{m}_{\mathrm{A}} }=\frac{\mathrm{15}−\mathrm{0}.\mathrm{1}×\mathrm{1}×\mathrm{10}}{\mathrm{10}+\mathrm{2}}=\frac{\mathrm{7}}{\mathrm{6}}>\mathrm{a}_{\mathrm{B}} =\mathrm{1} \\ $$$$\mathrm{R}_{\mathrm{A}} =\mathrm{m}_{\mathrm{A}} \mathrm{a}=\mathrm{2}×\frac{\mathrm{7}}{\mathrm{6}}=\frac{\mathrm{7}}{\mathrm{3}}\approx\mathrm{2}.\mathrm{33}\:\mathrm{N} \\ $$$$\mu_{\mathrm{A}} \mathrm{m}_{\mathrm{A}} \mathrm{g}=\mathrm{0}.\mathrm{3}×\mathrm{2}×\mathrm{10}=\mathrm{6}\:\mathrm{N}\:>\:\mathrm{R}_{\mathrm{A}} \\ $$$$\Rightarrow\mathrm{block}\:\mathrm{A}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{slide},\:\mathrm{ok}! \\ $$$$ \\ $$$$\Delta\mathrm{a}=\mathrm{a}_{\mathrm{A}} −\mathrm{a}_{\mathrm{B}} =\frac{\mathrm{7}}{\mathrm{6}}−\mathrm{1}=\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \\ $$$$\mathrm{t}=\sqrt{\frac{\mathrm{2}\Delta\mathrm{s}}{\Delta\mathrm{a}}}=\sqrt{\frac{\mathrm{2}×\mathrm{3}}{\frac{\mathrm{1}}{\mathrm{6}}}}=\mathrm{6}\:\mathrm{s} \\ $$$$\Rightarrow\mathrm{after}\:\mathrm{6}\:\mathrm{seconds}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{B}. \\ $$$$ \\ $$$$\mathrm{case}\:\mathrm{2}:\:\mathrm{both}\:\mathrm{blocks}\:\mathrm{slide}\:\mathrm{on}\:\mathrm{plank} \\ $$$$\mathrm{impossible},\:\mathrm{as}\:\mathrm{shown}\:\mathrm{above} \\ $$$$ \\ $$$$\mathrm{case}\:\mathrm{3}:\:\mathrm{none}\:\mathrm{of}\:\mathrm{the}\:\mathrm{blocks}\:\mathrm{slides}\:\mathrm{on}\:\mathrm{plank} \\ $$$$\mathrm{a}_{\mathrm{A}} =\mathrm{a}_{\mathrm{B}} =\mathrm{a} \\ $$$$\mathrm{F}=\left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} +\mathrm{m}_{\mathrm{B}} \right)\mathrm{a} \\ $$$$\Rightarrow\mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}+\mathrm{m}_{\mathrm{A}} +\mathrm{m}_{\mathrm{B}} }=\frac{\mathrm{15}}{\mathrm{10}+\mathrm{2}+\mathrm{1}}=\frac{\mathrm{15}}{\mathrm{13}}\:\mathrm{m}/\mathrm{s}^{\mathrm{2}} \\ $$$$\mathrm{R}_{\mathrm{B}} =\mathrm{m}_{\mathrm{B}} \mathrm{a}=\mathrm{1}×\frac{\mathrm{15}}{\mathrm{13}}\approx\mathrm{1}.\mathrm{15}\:\mathrm{N} \\ $$$$\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}=\mathrm{0}.\mathrm{1}×\mathrm{1}×\mathrm{10}=\mathrm{1}\:\mathrm{N}\:<\:\mathrm{R}_{\mathrm{B}} \\ $$$$\Rightarrow\mathrm{block}\:\mathrm{B}\:\mathrm{muss}\:\mathrm{slide}! \\ $$$$ \\ $$$$\Rightarrow\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{that}\:\mathrm{only}\:\mathrm{block}\:\mathrm{B}\:\mathrm{slides} \\ $$$$\mathrm{on}\:\mathrm{plank}.\:\mathrm{block}\:\mathrm{A}\:\mathrm{keeps}\:\mathrm{in}\:\mathrm{rest}\:\mathrm{on} \\ $$$$\mathrm{plank}.\:\mathrm{after}\:\mathrm{6}\:\mathrm{sec}\:\mathrm{block}\:\mathrm{A}\:\mathrm{meets}\:\mathrm{B}. \\ $$

Commented by mrW1 last updated on 05/Oct/17

a=(F/(M+m_A +m_B ))≥μ_B g  F≥μ_B (M+m_A +m_B )g=0.1×(10+2+1)×10=13 N  that means if F≥13 N, block B slides  on plank.    a=((F−μ_B m_B g)/(M+m_A ))≥μ_A g  F≥[μ_A (M+m_A )+μ_B m_B ]g=[0.3×(10+2)+0.1×1]×10=37 N  that means if F≥37 N, also block A  slides on the plank.    F<13 N ⇒ case 3: no block slides  13 N≤F<37 N ⇒ case 1: only block B slides  F≥37 N ⇒ case 2: both blocks slide    in case 3:  t→∞    in case 2:  t=(√3) sec (see above)    in case 1:  Δa=((F−μ_B m_B g)/(M+m_A ))−μ_B g=((F−μ_B (M+m_A +m_B )g)/(M+m_A ))  t=(√((2Δs)/(Δa)))=(√((2s(M+m_A ))/(F−μ_B (M+m_A +m_B )g)))  =(√((2×3×(10+2))/(F−0.1×(10+2+1)×10)))  =(√((72)/(F−13)))

$$\mathrm{a}=\frac{\mathrm{F}}{\mathrm{M}+\mathrm{m}_{\mathrm{A}} +\mathrm{m}_{\mathrm{B}} }\geqslant\mu_{\mathrm{B}} \mathrm{g} \\ $$$$\mathrm{F}\geqslant\mu_{\mathrm{B}} \left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} +\mathrm{m}_{\mathrm{B}} \right)\mathrm{g}=\mathrm{0}.\mathrm{1}×\left(\mathrm{10}+\mathrm{2}+\mathrm{1}\right)×\mathrm{10}=\mathrm{13}\:\mathrm{N} \\ $$$$\mathrm{that}\:\mathrm{means}\:\mathrm{if}\:\mathrm{F}\geqslant\mathrm{13}\:\mathrm{N},\:\mathrm{block}\:\mathrm{B}\:\mathrm{slides} \\ $$$$\mathrm{on}\:\mathrm{plank}. \\ $$$$ \\ $$$$\mathrm{a}=\frac{\mathrm{F}−\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}}{\mathrm{M}+\mathrm{m}_{\mathrm{A}} }\geqslant\mu_{\mathrm{A}} \mathrm{g} \\ $$$$\mathrm{F}\geqslant\left[\mu_{\mathrm{A}} \left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} \right)+\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \right]\mathrm{g}=\left[\mathrm{0}.\mathrm{3}×\left(\mathrm{10}+\mathrm{2}\right)+\mathrm{0}.\mathrm{1}×\mathrm{1}\right]×\mathrm{10}=\mathrm{37}\:\mathrm{N} \\ $$$$\mathrm{that}\:\mathrm{means}\:\mathrm{if}\:\mathrm{F}\geqslant\mathrm{37}\:\mathrm{N},\:\mathrm{also}\:\mathrm{block}\:\mathrm{A} \\ $$$$\mathrm{slides}\:\mathrm{on}\:\mathrm{the}\:\mathrm{plank}. \\ $$$$ \\ $$$$\mathrm{F}<\mathrm{13}\:\mathrm{N}\:\Rightarrow\:\mathrm{case}\:\mathrm{3}:\:\mathrm{no}\:\mathrm{block}\:\mathrm{slides} \\ $$$$\mathrm{13}\:\mathrm{N}\leqslant\mathrm{F}<\mathrm{37}\:\mathrm{N}\:\Rightarrow\:\mathrm{case}\:\mathrm{1}:\:\mathrm{only}\:\mathrm{block}\:\mathrm{B}\:\mathrm{slides} \\ $$$$\mathrm{F}\geqslant\mathrm{37}\:\mathrm{N}\:\Rightarrow\:\mathrm{case}\:\mathrm{2}:\:\mathrm{both}\:\mathrm{blocks}\:\mathrm{slide} \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{case}\:\mathrm{3}: \\ $$$$\mathrm{t}\rightarrow\infty \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{case}\:\mathrm{2}: \\ $$$$\mathrm{t}=\sqrt{\mathrm{3}}\:\mathrm{sec}\:\left(\mathrm{see}\:\mathrm{above}\right) \\ $$$$ \\ $$$$\mathrm{in}\:\mathrm{case}\:\mathrm{1}: \\ $$$$\Delta\mathrm{a}=\frac{\mathrm{F}−\mu_{\mathrm{B}} \mathrm{m}_{\mathrm{B}} \mathrm{g}}{\mathrm{M}+\mathrm{m}_{\mathrm{A}} }−\mu_{\mathrm{B}} \mathrm{g}=\frac{\mathrm{F}−\mu_{\mathrm{B}} \left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} +\mathrm{m}_{\mathrm{B}} \right)\mathrm{g}}{\mathrm{M}+\mathrm{m}_{\mathrm{A}} } \\ $$$$\mathrm{t}=\sqrt{\frac{\mathrm{2}\Delta\mathrm{s}}{\Delta\mathrm{a}}}=\sqrt{\frac{\mathrm{2s}\left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} \right)}{\mathrm{F}−\mu_{\mathrm{B}} \left(\mathrm{M}+\mathrm{m}_{\mathrm{A}} +\mathrm{m}_{\mathrm{B}} \right)\mathrm{g}}} \\ $$$$=\sqrt{\frac{\mathrm{2}×\mathrm{3}×\left(\mathrm{10}+\mathrm{2}\right)}{\mathrm{F}−\mathrm{0}.\mathrm{1}×\left(\mathrm{10}+\mathrm{2}+\mathrm{1}\right)×\mathrm{10}}} \\ $$$$=\sqrt{\frac{\mathrm{72}}{\mathrm{F}−\mathrm{13}}} \\ $$

Commented by Tinkutara last updated on 05/Oct/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com